

Dependable Embedded Systems: Design Implications of New and Scaled Technologies for Embedded Electronics and Systems-on-Chip

CREDES Workshop Tallinn 22.09.2010

Thomas Hollstein

Tallinn University of Technology Department of Computer Engineering Dependable Embedded Systems Group Prof. Dr.-Ing. Thomas Hollstein Tallinn Estonia

Outline

- Technology Evolution and Yield
- Reliability and Maintainability of Systems
- Application Examples
 - Circuit Design: Printed OTFT Display Drivers
 - System Design: Networks-on-Chip
- Dependable Embedded Systems: Concepts for Research
- Closing Remarks & Strategic Conclusions

Outline

- Technology Evolution and Yield
- Reliability and Maintainability of Systems
- Application Examples
 - Circuit Design: Printed OTFT Display Drivers
 - System Design: Networks-on-Chip
- Dependable Embedded Systems: Concepts for Research
- Closing Remarks & Strategic Conclusions

Power vs. Variability

1918 TALLINNA TEHNIKAÜLIKOOL

> [Source/Copyright: Sylvester 2007 ProcIEEE]

> > Dependable

Embedded Systems

delay

Process

Variability

q #

affect the yield due to

22.09.2010 | CREDES Workshop | Dependable Embedded Systems | Thomas Hollstein | 5

Quantifying the Tradeoff

 \checkmark

Parametric Yield given Timing and Power Constraints:

1918 **Tallinna tehnikaülikool** Tallinn University of Technolog

Challenge: Power Density

Hot Plate

Infineon/Qimonda: Advanced Memory Buffer, 2006

- Power: 1500W
- Ø: 180mm
- Area: 25400mm²
- Power Density: 0,059W/mm²

- Power: 6W
- Die Area: 30,5mm²

 Power Density: 0,196W/mm²

Power Density/Heat has a strong Impact on Reliability!

Outline

- Technology Evolution and Yield
- Reliability and Maintainability of Systems
- Application Examples
 - Circuit Design: Printed OTFT Display Drivers
 - System Design: Networks-on-Chip
- Dependable Embedded Systems: Concepts for Research
- Closing Remarks & Strategic Conclusions

Basic Definitions

1918 **Tallinna tehnikaülikool** Tallinn University of Technology

✓ Reliability:

... is the ability of a system or a component to perform its required functions under stated conditions for a specified period of time (IEEE)

Robustness

... is the quality of being able to withstand stresses, pressures, or changes in procedure or circumstance. A system, organism or design may be said to be "robust" if it is capable of coping well with variations (sometimes unpredictable variations) in its operating environment with minimal damage, alteration or loss of functionality. (Wikipedia)

Technology Issue:

solve reliability problems in new technologies; adequate technology modeling

✓ Device Issues:

appropriate device models; device and circuit simulation; robust ciruit design

Circuit Design Issue:

cope with limited device reliability >> device tolerant design techniques

Reliability: Devices, Components, Systems

System Design Issue:

robust specifications, architectural fault tolerance, in-system diagnostics,

flexible adaptive systems with masking capability for lower level deviations/defects

Application Design Issue:

select adaquate manufacturing technologies, design techniques and system architectures

Source/Copyright: NXP / Spoerle

Source/Copyright: sees-project.net

Test / Quality Control Issue:

test, if guaranteed system functionality is available

Physics / Technology

> Models

> Test

Productivity vs. Reliability

- Productivity increase by
 - use of CADre-use of components

Source/Copyright: porsche.com

needs an extensive effort in specification management and specification propagation over several levels of a system design

in order to achieve **functional reliability!**

Outline

- Technology Evolution and Yield
- Reliability and Maintainability of Systems
- Application Examples
 - Circuit Design: Printed OTFT Display Drivers
 - System Design: Networks-on-Chip
- Dependable Embedded Systems: Concepts for Research
- Closing Remarks & Strategic Conclusions

Application Requirements vs. Technology

Requirements: Active Matrix Driver for OLED Signage Display

- Pixel Area = Available Size for driver circuit
- Digital Signage: low dynamic requirements (W of transistors can be rather small just the required current has to be driven)

Source/Copyright:www.vizworld.com/tag/display/

Application Requirements vs. Technology

Additional Requirements: Active Matrix Driver for OLED Signage Display

Uniform image area shouldn't be "cloudy"

- OLED current control instead of voltage control
- requirement of compensation of the driver transistors V_T and contact resistance variations caused by the process

1918

TALLINNA TEHNIKAÜLIKOOL

One Transistor Solution

Disadvantages:

- Doesn't support row/column scanning
- OLED is voltage controlled
- Not robust against parameter variations

Two Transistor Solution

Disadvantages:

 Not robust against parameter variations

Dimensioning Flow:

- Required Brightness defines necessary OLED current I_{OLED}
- related OLED voltage
 V_{OLED} can be extracted from OLED
 characteristics
- $V_{DS,M2} = V_{OLED} V_{DD}$
- Guess M₂ operation mode
- Dimension W of M2
- Compute required V_{GS} of M₂ from current equation.
- Check if operation mode guess was correct

Four Transistor Solution

Operation:

- Set Select Line 1 to Low and Select Line 2 to High
- M₄ goes into Saturation Region
- Impress exact current over data line (V_{GS} of M₄ relaxes to value according to current equation in saturation region)
- Set Select Line 1 to High and Select Line 2 to Low again

Outline

- Technology Evolution and Yield
- Reliability and Maintainability of Systems
- Application Examples
 - Circuit Design: Printed OTFT Display Drivers
 - System Design: Networks-on-Chip
- Dependable Embedded Systems: Concepts for Research
- Closing Remarks & Strategic Conclusions

22.09.2010 | CREDES Workshop | Dependable Embedded Systems | Thomas Hollstein | 21

NoC Routing Design Objective: Adaptivity

Adaptivity for increased reliability / fault tolerance and power flexibility:

- Multiple pathes can be used for routing from a source node to a target node
- Adaptive circumvention of defective network links
- Network adaptation in case of partial power shut-down
- Maximized performance by adaptive traffic equalisation on network links

Routing: Deadlock Avoidance - Virtual Channels

1918 **TALLINNA TEHNIKAÜLIKOOL**

Deadlock Avoidance:

- Introduction of Virtual Channels (e.g. Duato,); Disadvantage: complex switch fabric (large router area)
- Goal: avoid cycles by principle! (Problem: this goal is competing with adaptivity!)

Livelock Avoidance:

Mimimum Routing would avoid livelocks

Routing algorithms, that do tolerate a large variety of irregularities and which don't apply the concept of virtual channels have to fulfil the condition of absence of cyclic dependencies and provide maximum adaptivity!

Deadlock Avoidance: Turn Theory

Prohibition of "turns" destroys cycles to prevent deadlocks

State-of-the Art:

- Glass, C.J. and L.M. Ni: The Turn Model for Adaptive Routing, Proceedings of the 19th Annual International Symposium on Computer Architecture, 1992
- Chiu, Ge-Ming: The Odd-Even Turn Model for Adaptive Routing, IEEE Transactions on Parallel and Distributed Systems, 2000

Wu, Jie:A Fault-Tolerant and Deadlock-Free Routing Protocol in 2D-Meshes Based on Odd-Even Turn Model,
IEEE Transactions on Computers, 2003

Link Setup by XHiNoC

1918 **Tallinna Tehnikaülikool** Tallinn University of Technology

XHiNoC: Packet Interleaving and Multicast Capability

The Routing Engine (RE) is combination of a flexible router hardware logic and a reconfigurable router look-up-table (LUT).

IDM unit maps ID slot allocation and classifies flits based on their ID-tag.

The emptyID signal is set to '1' if there is no free ID-tag and is sent to router hardware logic.

> Scalability: Network Size, Power (partial shutdown)

TALLINNA TEHNIKAÜLIKOOL

Robustness against Soft Errors

1918 TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF

These bits have to be secured against soft errors on physical level, otherwise misrouting will occur by the ID mapping of the network

For data / payload bits it may be sufficient to secure them by CRC checks on application level

		3 bit	3 bit	32 bit							
		TYPE - Header -	ID	X source	Y source	Z source	X target	Y target	Z target	Extension	
		TYPE -DataBody- ID Data Payload									
	TYPE -DataBody- ID Data Payload										
		į	ļ			ł					
	ID	Data Payload									
	· / ·										
Type of Flit	bi	n/dec code		NoC-specific provisions have to considered in order to target							
Not FLit		000 (0)									
Packet Header		001 (1)		dependability						U	
Message/Data Body		010 (2)									
End of Message		011 (3)									

NoC Robustness

1918 **Tallinna Tehnikaülikool** Tallinn University of Technology

- Defective Links: appropriate deadlock-free routing must be secured
- Hardware State must be detected and stored. Specific initialisation of NoC after BIST during power-up by Defect Management Controller
- System Reconfigurability is prerequisite for efficient Defect Management

Outline

- Technology Evolution and Yield
- Reliability and Maintainability of Systems
- Application Examples
 - Circuit Design: Printed OTFT Display Drivers
 - System Design: Networks-on-Chip

 Dependable Embedded Systems: Concepts for Research

Closing Remarks & Strategic Conclusions

Dependability: Definition

1918 **Tallinna Tehnikaülikool** Tallinn University of Technology

IFIP WG10.4 on Dependable Computing and Fault Tolerance:

... the trustworthiness of a computing system which allows reliance to be justifiably placed on the service it delivers ..."

✓ IEC IEV 191-02-03 (more general):

"... dependability (is) the collective term used to describe the availability performance and its influencing factors : reliability performance, maintainability performance and maintenance support performance ..."

Design Challenges

 1918

 TALLINNA TEHNIKAÜLIKOOL

 Tallinn University of Technology

How can we handle Complexity, Power Minimisation, technological Variability, computational Throughput and Cost, guaranteeing reliability?

- Well-defined Specification & Design Methodologies
- Scalability and Flexibility (design and configuration) Reconfigurability: Xilinx Automotive - new (Virtex) devices being highly dedicated to automotive requirements (infotainment, radar, object recognition) will occur soon

Source/Copyright:Xilinx

Functional Error Sources

Class E "externally induced errors":

- Soft errors
- Faults caused by aging (appearing first as statistical and then as \checkmark permanent faults)

Class I "internally induced errors":

Specification faults (lacking coverage of functional complexity)

Addressing Class E:

1918 **Tallinna Tehnikaülikool** Tallinn University of Technology

Soft Error aware Design:

- on-chip busses (physical arrangement, protocol)
- SoC Components (redundant approaches, robust circuit structures)
- Architecture: Adaptivity (Communication, Power)

Packet Format

Flits belonging to the same packet will have the same ID in each communication link

	3 bit	3 bit		32 bit							
	TYPE - Header -	ID	X source	Y source	Z source	X target	Y target	Z target	Extension		
	TYPE -DataBody-	ID	Data Payload								
	TYPE ID Data Payload										
	1	ļ	:								
	TYPE -DataEnd-	ID	Data Payload								
	<u>/</u>	<u>``</u>									
Type of Flit	bin/dec code										
Not FLit	000 (0)										
Packet Header	001 (1)										
Message/Data Body	010 (2)										
End of Message	011 (3)										

Design for Reliability

1918 **Tallinna tehnikaülikool** Tallinn University of Technology

System Design: V Model

1918 **Tallinna tehnikaülikool** Tallinn university of technology

22.09.2010 | CREDES Workshop | Dependable Embedded Systems | Thomas Hollstein | 36

Cooperations with Research Partners

Estonian "View"

SME Environment in the field of IT:

- Software-driven
- Hardware: no ASIC Industry, but reconfigurable Standard HW
- Embedded Systems: need of Integration of HW & SW

Source/Copyright:Xilinx

Outline

- Technology Evolution and Yield
- Reliability and Maintainability of Systems
- Application Examples
 - Circuit Design: Printed OTFT Display Drivers
 - System Design: Networks-on-Chip
- Dependable Embedded Systems: Concepts for Research

Closing Remarks & Strategic Conclusions

Strategic Conclusions

Industry Orientation:

- Definition of Research and Education Profile based on SME requirements in the environment of the university
- Exploration of new technological possibilities can only be achieved by new interdisciplinary approaches

Research:

- Addressing Technology Properties and Soft Errors
- Extensive Use of Debug Systems on Chip and Board Level
- Seamless Network Integration

Education: Computer Engineering

Education:

- High-Tech job profile be at the cutting edge of technology
- Integrated View: Hardware & Software
- Internationalisation of Master and Ph.D. Education

1918

TALLINNA TEHNIKAÜLIKOOL

Thank you for your attention!

It's Time 4 your Questions now ...

