
Design and Validation of
Application-specific
Multiprocessor Platforms based on
Networks-on-Chip

Leandro Soares Indrusiak

lsi@cs.york.ac.uk
http://www-users.cs.york.ac.uk/lsi

CREDES Workshop – Tallinn - September 2010

2

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

About the speaker

 Leandro Soares Indrusiak

 born in Santa Maria, RS, Brazil in 1974

 Electrical Engineer, UFSM, Santa Maria, 1995

 MSc Computer Science, UFRGS, Porto Alegre, 1998

 Dr.-Ing Computer Science, jointly issued by UFRGS and TU
Darmstadt (Germany), 2003

 1998 - 2000 Lecturer in Computer Science

PUCRS, Uruguaiana, Brazil

 2003 - 2008 Research Fellow in Microelectronics Design

TU Darmstadt, Germany

 2008 - Lecturer in Real Time Embedded Systems

University of York, UK

3

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

York - Location and history

 York is 200 miles north of London

 London: 2 hours

 Manchester airport: 1.5 hours

 Ancient city – historic capital of north – with over
2,000 years of history and heritage, and
outstanding quality of life

*York**YorkYork

*London**LondonLondon

4

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Heslington West

5

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Heslington East – Phase 1

6

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

York’s position

UK top 10
World top 100
UK University of the Year 2003
Queen’s Anniversary Prize 1996,

2006 & 2008, 2010
Computer Science, Plant Biology,
Health Economics, and Social Policy

“One of Britain’s academic success
stories, forging a reputation to rival
Oxford and Cambridge in the space of
40 years” Sunday Times

“The Cambridge of the North“

Financial Times

7

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Computer Science at York

 In numbers
 38 full-time academics (lecturers,

senior lecturers, readers, professors)

 400 undergraduates (BEng, MEng)

 130 taught postgraduates (MSc)

 100 research students (PhD)

 Consistently ranked among the top CS
departments in the UK

 Teaching judged “Excellent” by HEFCE

 Majority of the department’s research
judged “world leading” or
“internationally excellent”

8

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Computer Science at York - Teaching

 Undergraduates

9

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Computer Science at York - Teaching

 Graduates

10

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Computer Science at York – Research

Design and Validation of
Application-specific
Multiprocessor Platforms based on
Networks-on-Chip

Leandro Soares Indrusiak

lsi@cs.york.ac.uk
http://www-users.cs.york.ac.uk/lsi

CREDES Workshop – Tallinn - September 2010

12

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Outline

 On-Chip Multiprocessing
 motivation, review

 Application-specific Multiprocessor Platforms
 validation, concurrency issues, application-platform mapping

 Platform models
 evaluation, accuracy

 Application models
 concurrency

 Joint execution of application and platform models
 case study

 Background theory and tool support
 actor orientation, Ptolemy II, custom made extensions

 demo

13

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Outline

 On-Chip Multiprocessing
 motivation, review

 Application-specific Multiprocessor Platforms
 validation, concurrency issues, application-platform mapping

 Platform models
 evaluation, accuracy

 Application models
 concurrency

 Joint execution of application and platform models
 case study

 Background theory and tool support
 actor orientation, Ptolemy II, custom made extensions

 demo

14

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

The problem with CMOS

 CMOS limits can be felt in
many ways
 number of transistors

 clock frequency

 power dissipation

 Expectations of
performance increase
must be met somehow
 on-chip multiprocessing

seems to be the best shot

1970 1980 1990 2000 2010

transistors (x 103)

clock freq. (MHz)

power (W)

10000000

1000000

100000

10000

1000

100

10

1

0

15

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Tilera Tile64
(2008)

PE

Intel 8086
(1978)

PE

chip area (mm2) 33 6.76* 433*

transistors (x103) 29 9600* 681000

technology (μm) 3.0 0.9 0.9

* estimation by C.Killebrew

On-chip Multiprocessing

16

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

On-chip Multiprocessing

 Many architectural alternatives
 homogeneous vs. heterogeneous

processing

 shared memory vs. distributed memory

 on-chip interconnect

• point-to-point, crossbar

• on-chip bus

• network-on-chip

source: Intel

17

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Multiprocessor Platforms for Embedded Systems

• nine processing elements: one
Power Processor Element (PPE) and
eight Synergistic Processing
Elements (SPE)
• PPE has separated I & D L1 cache
(32KB each)
• Each SPE can only access its
256KB of local storage (LS) and uses
its memory flow controller (MFE) to
perform DMA operations to/from LS
(non-blocking)
• Bandwidth (3.2 GHz)

• SPE <-> LS = 2x 25.6 GB/s
• MFC <-> EIB = 2x 25.6 GB/s
• MIC <-> EIB = 2x 25.6 GB/s
• L1 <-> L2 = 2x 51.2 GB/s

 Cell Processor

18

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

 ARM Cortex-9 MPCore

• can have 1-4 Cortex-A9 cores with
separated I & D L1 cache (32KB
each)
• data caches of all cores are fully
coherent
• interface to external components be
made cache-coherent
• on-chip interconnect based on
AMBA standard

Multiprocessor Platforms for Embedded Systems

19

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

 ARM Cortex-9 MPCore – TI OMAP 4 Platform

Multiprocessor Platforms for Embedded Systems

20

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

 Tilera TILEPro64

Multiprocessor Platforms for Embedded Systems

21

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

 As the number of processing
elements increase, on-chip
communication becomes a major
issue

 point-to-point: huge area overhead

 on-chip bus: doesn’t scale (restricted
parallelism)

 in both cases: long wires cause timing
issues and excessive power
consumption

Multiprocessor Platforms for Embedded Systems

PE PE

PE PE

PE

PE

PE PE

PE PE

PE

PE

A

22

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Multiprocessor Platforms for Embedded Systems

Networks-on-Chip (NoC)
multi-hop, packet-based

communication

scalable, high bandwidth

 low power (shorter wires)

distributed arbitration

 regular, reusable

supports GALS paradigm

communication latency

area

complex to design

message

packet

flit

PE PE

PEPE

PE PE

PE

PE

R

PE

R R

RR R

RR R

23

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Multiprocessor Platforms for Embedded Systems

Networks-on-Chip (NoC)

PE PE

PEPE

PE PE

PE

PE

R

PE

R R

RR R

RR R

arbitration

routing
&

transmission
control

routing
&

transmission
control

data out

data in data out

data in

data out

data in data out

data in

data outdata in

24

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Outline

 On-Chip Multiprocessing
 motivation, review

 Application-specific Multiprocessor Platforms
 validation, concurrency issues, application-platform mapping

 Platform models
 evaluation, accuracy

 Application models
 concurrency

 Joint execution of application and platform models
 case study

 Background theory and tool support
 actor orientation, Ptolemy II, custom made extensions

 demo

25

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-specific Multiprocessor Platforms

 Fundamental questions

can I meet the constraints of a given application A
if I run it over platform P?

• performance and timing

• power

no? isn’t there a way to optimise it?

• mapping and scheduling

• voltage and frequency scaling

yes? can I guarantee it?

• hard/soft real-time

26

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-specific Multiprocessor Platforms

 Many architectural
alternatives
 large design space

 hard to evaluate which alternative
platform is the optimal match for
the requirements imposed by a
given application

 Application-platform mapping
plays a critical role

Alberto Sangiovanni-Vincentelli

27

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

 Application-Platform
mapping isn’t really a
problem when dealing
with sequential
software and
uniprocessor hardware

application platform

PE

Application-specific Multiprocessor Platforms

28

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

 It has been studied for
decades by researchers
in parallel and distributed
computing

platform
1

PE

application

2

platform
2

PE

platform
3

PE

platform
4

PE

application

3

application

4

application

5

application

1

Application-specific Multiprocessor Platforms

29

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

 Application-Platform
mapping is a critical
issue when it comes to
multiprocessor
platforms

application platform

PE

PE

PE

PE

?
IDLEIDLE

IDLE

REALLY?

Application-specific Multiprocessor Platforms

30

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Sources: Gordon ASPLOS’06, Kudlur PLDI‘08

1

1975

2

4

8

16

32

64

128

256

512

1980 1985 1990 1995 2000 2005 2010

4004
8008
8080 8086 286 386 486 Pentium P2 P3 P4

Athlon Itanium Itanium2

Power4 PA88004004
8008
8080

PA8800

Opteron
CoreDuo

Power6
Xbox 360

BCM 1480
Opteron 4P

Xeon

Niagara Cell

RAW

RAZA
XLR Cavium

Unicore

Homogeneous Multicore

Heterogeneous Multicore
CISCO CSR1

Larrabee

PicoChip AMBRIC

AMD Fusion

NVIDIA G80

Core

Core2Duo

Core2Quad

#
c
o
re

s
/c

h
ip

C/C++/Java ???

Application-specific Multiprocessor Platforms

31

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

 Application-Platform
mapping is a critical
issue when it comes to
multiprocessor
platforms

must be able to
explore concurrency at
the application level

application platform

PE

PE

PE

PE

Application-specific Multiprocessor Platforms

32

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

 Application-Platform
mapping is a critical
issue when it comes to
multiprocessor
platforms

can be done
dynamically to improve
performance or to
increase dependability

application platform

PE

PE

PE

PE

Application-specific Multiprocessor Platforms

33

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-Platform Mapping

 The simplest formulation of the mapping problem
resembles a graph isomorphism problem

 application is a graph G = G(A, C), where ai A is an application task

and ci,j  C represents the communication from ai to aj

 platform is a graph G‘ = G(B, D), where bi  B is a processor and di,j

 D represents the channel from bi to bj

 objective is to map tasks onto processors such that task that
communicate with each other lie on adjacent processors

 There is no known polynomial time solution for the
graph isomorphism problem – NP-hard

34

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-Platform Mapping

 More sophisticated problem formulations may include
additional information to the application and platform
graphs, so that different objectives can be met

platform:
processing power of bi

power consumption and latency of di,j

application:
computational cost and deadline of ai

volume, max latency and required bandwidth of ci,j

 objectives: reduce bandwidth requirements on the platform, reduce
power consumption, balance thermal dissipation, etc.

35

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-Platform Mapping

 Platform models over-simplify the complex design space
of on-chip multiprocessor platforms

 Application and Platform models disregard the temporal
dimension
 must include further details on time and concurrency

36

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Outline

 On-Chip Multiprocessing
 motivation, review

 Application-specific Multiprocessor Platforms
 validation, concurrency issues, application-platform mapping

 Platform models
 evaluation, accuracy

 Application models
 concurrency

 Joint execution of application and platform models
 case study

 Background theory and tool support
 actor orientation, Ptolemy II, custom made extensions

 demo

37

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Platform models

 How to evaluate the quality of platform alternatives?

 HDL-based approach
 cycle-accurate model of the platform

• hard to create, debug and modify

• synthesisable

 traffic generators

 DE simulator

38

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

 How to evaluate the quality of platform alternatives?

 Abstract NoC models
 cycle/flit-level accuracy

 PAT (payload abstraction)

 static analysis

 hybrid

 Modelling trade-offs
 accuracy

 observability

 simulation speed

Platform models

39

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

40

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

41

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

42

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

43

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

 Simplified models
 PAT

• packet-level accuracy, 1-position buffers

• complete packet is abstracted by header and trailler

• header‘s way through the network is fully simulated, trailler latencies are
calculated

• less than 5% error for average latency (compared with cycle-accurate HDL)

 real-time analysis

• priority-based virtual channels

• static analysis of worst-case interference between network flows

 hybrid model - transaction-level (TLM)

• priority-based virtual channels

• analysis of interference between network flows

• less than 10% error for average and worst case latency (compared with cycle-
accurate model)

Platform models

44

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

 Simplified models

Platform models

1

10

100

1000

10000

100000

20 40 60 80 100

CA

TLM

application
flows .

20
40
60
80

100

cycle-accurate
17105.42
31490.13
55561.87
70231.76
86626.07

simulation time (s)

TLM
5.47

19.17
45.78
83.06

105.28

1

10

100

1000

10000

100000

1 2 4 8 20 200 800 1400

CA

TLM

application
time (s) .

1
2
4
8

20
200
800

1400

cycle-accurate
1465.18
2895.69
5978.32

11806.91
29927.24

simulation time (s)

TLM
7.67
7.89
7.98
8.28
9.77

26.55
86.29

169.06

45

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

functional/untimed

Platform models

traffic
generator

traffic
generator

traffic
generator

traffic
generator

traffic
generator

PATflit-levelcycle-accurate

synthesis

prototyping

46

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Platform models
 But how useful are those traffic generators?

 critical point if we are targeting application-specific platforms

traffic
generator

traffic
generator

traffic
generator

traffic
generator

traffic
generator

NoC

47

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

OS

APP

PE

 Can we have models of actual processors, OS and
application software?

 yes, but it will be slow to simulate and hard to debug/modify

OS

APP

PE

Platform models

NoC

OS

APP

PE

OS

APP

PE

OS

APP

PE

48

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application Model

 We use an application model instead

Application models

NoC

49

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Course Outline

 On-Chip Multiprocessing
 motivation, review

 Application-specific Multiprocessor Platforms
 validation, concurrency issues, application-platform mapping

 Platform models
 evaluation, accuracy

 Application models
 concurrency

 Joint execution of application and platform models
 case study

 Background theory and tool support
 actor orientation, Ptolemy II, custom made extensions

 demo

50

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application models
 Main focus on

 concurrency model

 inter-process
communication
behaviour

 Executable

51

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application models
 Many concurrent

programming models
available
 threads

 concurrent processes with
message-passing

 actors

 streams/dataflow

 CSP

 timed automata

 <add your favorite here>

application application

52

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application models

The choice of which
concurrent programming
model should be adopted
depends on

 application domain

 familiarity by the
designer/developer

 availability of stable flows and
tools

 predictability, and ability to
match underlying HW/SW

model tools

threads libraries in
Java and C++

message
passing

OpenMP

actors Simulink,
Ptolemy

streams /
dataflow

StreamIt,
CUDA

timed
automata

UPAAL

53

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application models

e

d

b
a

c

composite

actor

directors

actor

w

x
y

j
k

D1
D2 D2

54

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application models

e

d

b
a

c

composite

actor

directors

actor

w

x
y

j
k

D1
D2 D2

• captures the concurrent behaviour of the application

• completely independent from the platform model

• for a given mapping, it can be jointly executed with the
platform model

• joint execution allows back-annotation of performance
and power consumption figures

55

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Course Outline
 On-Chip Multiprocessing

 motivation, review

 Application-specific Multiprocessor Platforms
 validation, concurrency issues, application-platform mapping

 Platform models
 evaluation, accuracy

 Application models
 concurrency

 Joint execution of application and platform models
 case study

 Background theory and tool support
 actor orientation, Ptolemy II, custom made extensions

 demo

56

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Joint execution of application and platform models

e

d

b
a

c

w

x
y

j
k

D1
D2 D2

PE PE

PEPE

PE PE

PE

PE

R

PE

R R

RR R

RR R

Mapping 1

57

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Joint execution of application and platform models

e

d

b
a

c

w

x
y

j
k

D1
D2 D2

PE PE

PEPE

PE PE

PE

PE

R

PE

R R

RR R

RR R

Mapping 2

58

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

PE PE

PEPE

PE PE

PE

PE

R

PE

R R

RR R

RR R

Joint execution of application and platform models

e

d

b
a

c

w

x
y

j
k

D1
D2 D2

Mapping 2

59

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Joint execution of application and platform models

e

d

b
a

c

w

x
y

j
k

D1
D2 D2

Mapping X

functional/untimedPATflit-level

Mapping Y

Mapping Z

60

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Case study

 Application model
 autonomous vehicle

 model based on actors and
message sequence charts

 Platform models
 analytical

 hybrid

 cycle-accurate

61

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Case study

 Application model
 autonomous vehicle

 model based on actors and
message sequence charts

 Platform models
 analytical

 hybrid

 cycle-accurate

62

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Case study

63

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Case study

64

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Course Outline

 On-Chip Multiprocessing
 motivation, review

 Application-specific Multiprocessor Platforms
 validation, concurrency issues, application-platform mapping

 Platform models
 evaluation, accuracy

 Application models
 concurrency

 Joint execution of application and platform models
 case study

 Background theory and tool support
 actor orientation, Ptolemy II, custom made extensions

 demo

65

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Ptolemy II
 Modeling and

simulation framework
developed at UC
Berkeley
 Focus on modeling

concurrent components

 http://ptolemy.eecs.berkeley.edu

66

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

source: UC Berkeley

Ptolemy II

67

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

source: UC Berkeley

Ptolemy II

68

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

source: UC Berkeley

 Data Types

Ptolemy II

partial ordering of types

a conversion from one type to
another is allowed if the first type
appears below the second type in
the type lattice (first type is less
than or equal to the second type)

69

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

source: UC Berkeley

 Data Types

Ptolemy II

outType ≤ inType

70

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

source: UC Berkeley

 Functional composition

Ptolemy II

71

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Concurrency in Ptolemy II
 Concurrency modeling is

a primary goal of Ptolemy
II
 Based on the concept of

actor-orientation
 explicit definition of the

model of time and
concurrency

 support heterogeneous
models

 support domain
polymorphism

72

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Concurrency in Ptolemy II

execution semantic
of the top level
model

execution semantic of
the composite model

73

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

 According to Atkinson, Hewitt (MIT, 1977)
 Conceptually an actor is an object which has both procedural and

data aspects

 A process is a totally ordered sequence of computational events
where each event consists of sending a message to an actor

 The actor model of computation has encouraged the development of
a paradigm based on a society of experts communicating by passing
messages

74

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

 According to Gul Agha (MIT, 1986)
 Actors are computational agents which may function in parallel (have

their own thread of control) and communicate through asynchronous
message passing

 The idea behind actor languages is to provide the syntactic constructs
that can free the programmer from having to worry about the details of
a concurrent execution

75

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

 How to free the programmer from having to worry about
the details of a concurrent execution?
 One way is to remove unnecessary data dependencies

created by the assignment operation (von Neumann
bottleneck)

R1 = 3 (a)

R2 = R1 + 3 (b)

R1 = 4 (c)

R2 = R1 + 3 (d)

True Dependence

Output Dependence

Anti Dependence

76

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

 Functional programming allows for the possibility of
concurrent evaluation of expressions in a program

 (sum (4 5))
 9

77

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

 Functional programming allows for the possibility of
concurrent evaluation of expressions in a program

(sum ((mult (
(sum (4 5)) (sum (4 5))

)
(sum (4 5))

)
)

78

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

 Functional programming is unable to address the
problem of history-sensitive behaviors (functions don‘t
keep state)
 Actors avoid assignment operations but allow the

modeling of history-sensitive behaviors
 Gul Agha proposed the concept of replacement, which states that an

actor must specify/create the actor which will handle the next
message/communication

79

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

source: Gul Agha 1986

80

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

 According to Lee (Berkeley, 2004)
 In actor-oriented design, components are concurrent objects that

communicate via messaging, as opposed to abstract data structures
that interact via procedure calls

 Actors are conceptually concurrent, but unlike Agha’s actors, they
need not have their own thread of control

 Although communication is still through some form of message
passing, it need not be strictly asynchronous

81

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actor-orientation

 Actors execute and communicate with other actors in a
model
 A have a well defined component interface, which

abstracts the internal state and behavior of an actor, and
restricts how an actor interacts with its environment
 The interface includes ports that represent points of

communication for an actor, and parameters that are used
to configure the operation of an actor

82

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actor-orientation

ACTOR

ACTOR

PORT

PORT

CHANNEL

DATA

PORT

PARAMETERS

Package
Data

Unpackage
Data

Process
Data

ACTION METHODS

TOKEN

source: Lee 2004

83

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actor-orientation

 Actors communicate through channels that pass data from
one port to another according to some messaging scheme
 In object-oriented design, components interact primarily

by transferring control through method calls, while in
actor-oriented design they interact by sending messages
through channels
 Actors interact only with the channels that they are

connected to and not directly with other actors

84

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

source: Lee 2004

85

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actor-orientation

 The syntactic structure of an actor-oriented design model
says little about the semantics
 The semantics is determined by a model of computation

(MoC), which define the operational rules for executing a
model
 Such rules determine when actors perform internal

computation, update their internal state, and perform
external communication
 The model of computation also defines the nature of

communication between components
 According to Lee, the MoC is expressed as a Director in an

actor-oriented model

86

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actor-orientation

source: Lee 2005

87

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actor-orientation

 MoCs formalize a platform
of well defined execution
semantics that can help
mapping applications onto
implementation-related
platforms
 Heterogeneous models

can be created through
the hierarchical
composition of different
MoCs

Source: E. A. Lee

88

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Concurrent Models of Computation
 Rules that define how actors behave and communicate

concurrently in a given model
 According to the rule definitions, models can have specific

properties, such as being statically schedulable or time safe
 Examples: Discrete Events, Communicating Sequential

Processes, Continuous Time, Process Networks,
Synchronous Dataflow, Giotto, etc.

89

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Concurrent Models of Computation
 Models can have different representations of time

 absolute time

• T is a totally ordered closed

connected set

• T = 

 discrete time

• T is a totally ordered

discrete set

 untimed

• precedences

• T is a partially ordered

discrete set

t

temp (K)

temp (K)

t

T

T
read

temp A

read
temp B

avg
A, B

avg
A, B

read
temp A

read
temp A

read
temp B

90

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Concurrent Models of Computation
 Models can have different representations of time

 absolute time

• continuous time (CT)

 discrete time

• discrete events (DE)

 untimed

• dataflow models

- Kahn process networks (KPN)

- synchronous dataflow (SDF)

91

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Discrete Event (DE)

 In the DE MoC, actors communicate by sending events,
which comprehends a token and a tag
 token is a data value

 tag includes a timestamp and a microstep (used to order events with
the same timestamp)

 Events are processed chronologically according to their
timestamps
 Actors whose available input events are the oldest

(having the earliest time stamp of all pending events) are
activated

92

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Discrete Event (DE)

 Model time is global: all actors share the same
timestamp and microstep

 When actors send a token through an output port, this
token is encapsulated as an event and stored in a global
event queue

 Unlike specified otherwise by the actor, the event is
tagged with the current model time and microstep (actor
processes tokens without delay)

93

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Discrete Event (DE)

 Actors can be activated at arbitrary times by sending
pure events to themselves with a future timestamp (no
need for ports)

 In the global event queue, events are sorted based on
their tags, including time stamps and microsteps

 An event is removed from the global event queue when
the model time reaches its time stamp, and if it has a
data token, then that token is put into the destination
input port

94

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Discrete Event (DE)

source: Lee 2004

95

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Discrete Event (DE)

 Simultaneous events
 the execution of events with the same timestamp must be ordered (in

a deterministic way)

 achieve a dataflow behavior for events with the same timestamp

source: Lee 2005

96

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Discrete Event (DE)

 Typical uses:
 digital systems

 queue systems

 networks

 transportation systems

 commerce

 Similar to:
 VHDL, Verilog, SES Workbench

97

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Continuous Time (CT)

 Actors represent components that interact via
continuous time signals

 They typically specify algebraic or differential relations
between inputs and outputs, and can be modeled by
ordinary differential equations (ODEs)

 Such models are „solved“ rather than simulated

98

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Continuous Time (CT)

)(

)(

CxzB
dt

dz

Ayx
dt

dy

zy
dt

dx







99

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Continuous Time (CT)

 Solution is a continuous function of time (waveform)

 The precise solution of a set of ODEs is usually
impossible to be found using digital computers

 Numerical solutions are approximations of the precise
solution

100

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Continuous Time (CT)

 Numerical solution approximate the state trajectory of a
differential equation by estimating its value at discrete
points
 The choice of the points depends on the function
 Using numerical solvers, the solution is a discrete-event

signal

source: Lee 2004

101

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Continuous Time (CT)

 Typical uses:
 analog circuits

 plant dynamics in control systems

 mechanical systems

 heat flows

 Communication channels

 Similar to:
 Spice, Agilent ADS, Simulink

102

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Dataflow Model of Computation

 Dataflow models represent a given system
 as a directed graph

 where each node performs computation (actors)

 and edges represent channels through which nodes can exchange data
(tokens)

A1

A3

A0 A2 A4

In Von Neumann imperative style, program counter rules the
execution

Dataflow models don‘t define the sequence on which actors are
executed (fired)

Actors can fire when inputs are available (actors without inputs can
fire anytime)

Exposes potential concurrency: data movement rules the execution

103

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Dataflow Model of Computation

 Actors execute concurrently and communicate by exchanging tokens
through FIFO-buffered channels

 computation performed by a given actor can be described by imperative
language

 Buffers usually treated as unbounded for flexibility

 buffer sizes on final implementation are a design decision

 Read operations are destructive: once read, the token is removed from
the buffer

A1

A3

A0 A2 A4

104

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Dataflow Model of Computation

 Applications of dataflow models

 signal processing systems

 systems dealing with continuous streams of data

 Easier to extract parallelism
 Buffered channels are used in such systems anyway

+

x

x

D

D

105

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Proposed by Gilles Kahn in 1974
 Processes (actors) communicate asynchronously

through unbounded buffers
 non-blocking write

 blocking read

 A process that reads from an empty channel will stall
and can only continue when the channel contains
sufficient tokens
 Processes are not allowed to test an input channel for

existence of tokens without consuming them

106

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)
 At any given point, a process is

either doing some computation
(active) or it is blocked waiting for
data (read blocked) on exactly one
of its input channels
 it cannot wait for data from more than one

channel simultaneously

107

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Important property: DETERMINISM

the sequence of values communicated through the
channels is completely determined by the model

a KPN can be executed using a completely parallel
schedule, a completely sequential schedule, or any
schedule in between, always yielding the same
output results for a given input sequence

which process to activate at a certain moment has
to be decided during execution time, based on the
current situation

108

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

process f (InFIFO<int> u, OutFIFO<int> v, OutFIFO<int> w)
{

int k;
while (true){

k = u.wait();
if (k % 2 = 0) v.send (k);
else w.send(k);

}

wait() returns the next
token in an input FIFO,
blocking if it’s empty

send() writes a data
value on an output FIFO

w
f

v
u

109

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

process g (InFIFO<int> u, OutFIFO<int> v)
{

int k;
while (true){

k = u.wait();
v.send (k);

}

g vu

110

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

process h (InFIFO<int> t, InFIFO<int> u, OutFIFO<int> v)
{

int k; boolean s=true;
while (true){

if (s) then k = t.wait();
else k = u.wait();
v.send (k);
s=!s;}

}

h v

u

t

111

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f6 2 7 1 4

112

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f6 2 7 1

113

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f6 2 7 1

4

114

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f6 2 7

4

115

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f6 2 7

4

1

116

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f6 2

4

1

117

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f6 2

4

7 1

118

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f6

4

7 1

119

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f6

2 4

7 1

120

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

2 4

7 1

121

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2 4

7 1

122

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1

123

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1

4

124

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1

125

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1

4

126

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1

4

127

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1

4

128

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1

4

129

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6

7 1

2

4

130

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6

7

2

4

131

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6

7

2

4

1

132

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6

7

2

4

133

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6

7

2

1 4

134

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

1 4

135

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

1 4

7

136

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

2

1 4

7

137

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

1 4

7

138

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6

1 4

7

139

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6

2 1 4

7

140

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6

2 1 4

141

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6

7 2 1 4

142

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f 7 2 1 4

143

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f 6 7 2 1 4

144

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

 Schedule

 f f f f f gu h h gu gd gd gu h h h

h

g

g

f 6 7 2 1 4

145

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 A given process is only affected by the sequence of
tokens on its inputs
 it can’t tell whether they arrive early, late, or in what order

 it will behave the same in any case

 the sequence of tokens it puts on its outputs is the same regardless of
the timing of the tokens on the inputs

146

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Schedule must be determined at runtime
 it doesn‘t affect functional behavior

 challenge is to avoid accumulation of tokens

 not all systems can be scheduled without token accumulation

 whether a KPN can execute in bounded memory is undecidable

 a number of algorithms can find a schedule to execute a KPN in
bounded memory (if such schedule exists)

• usually require run-time deadlock detection

h

g

g

f...1 1 2 1 1 2 1 1 2

147

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Proposed by Lee and Messerschmitt in 1987
 Restricted type of KPN useful for modeling simple

dataflow systems
 Constraint: each actor in a model reads and writes a

fixed number of tokens every time it is fired
 Schedule can be statically determined

 simpler and faster implementation of the model execution engine,
bounded memory usage

 deadlocks are avoided

148

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Adequate for signal processing systems
 number of consumed and produced tokens per firing is independent of

the data and known beforehand

+

x

x

D

D

149

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)
 Adequate for signal processing systems

 number of consumed and produced tokens per firing is independent of the
data and known beforehand

+

x

x

D

D

1 1

1

1

1
1 1

1

homogeneous SDF
graph

Delay D – nth token consumed by its successor is the
n-1th token produced by its predecessor
• initialized with d „zero“ tokens

150

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Scheduling SDF
 must respect precedence graph

 no process fired unless all tokens it consumes are available

 valid schedules: A B C , B A C

 invalid schedule: C A B

+

x

x

1 1

1

1

1
1 1

1

A

B

C

+

x

x

A

B

CD

D

151

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 assumes infinite stream of data

 periodic schedule can be applied repetitively on input stream without
accumulating tokens in the buffers

A B

C

1 1

1 1

2 2
PASS:

A B C C

152

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 formalism to determine PASS

 1. build the topology matrix 

A B

C

1 1

1 1

2 2
e1

e2 e3

1 -1 0

2 0 -1

0 2 -1

e1

e2

e3

A B C

 =

token consumption is negative

153

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 formalism to determine PASS

 2. determine the relative firing frequency of each node by finding the
smallest positive integer vector q such as  q = 0

qA

qB

qC

= 0

1

1

2

q =

1 -1 0

2 0 -1

0 2 -1

154

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 formalism to determine PASS

 3. if rates can be established, any scheduling algorithm that avoids
buffer underflow will produce a correct schedule if it exists

PASS: A B C C

A B

C

1 1

1 1

2 2

e1

e2 e3

- for each node, schedule if
runnable, trying each node
once

- if each node has been
scheduled qi times, stop

1

1

2

q =

155

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 not always possible to find a PASS

A C

B

1 1

2 3

1 1
1 0 -1

1 -2 0

0 3 -1
 =

0

0

0
q =

tokens will accumulate here

rate inconsistency

156

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 how to test?

 rank() = s – 1 (s stands for the number of actors on the graph)

• necessary condition for the existence of a PASS

A C

B

1 1

2 3

1 1
1 0 -1

1 -2 0

0 3 -1
 = =

1 0 -1

0 -2 1

0 0 1/2

using Gaussian
elimination

row echelon
form

157

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 how to test?

 rank() = s – 1 (s stands for the number of actors on the graph)

• necessary condition for the existence of a PASS

1 0 -1

1 -2 0

0 3 -1
 = =

1 0 -1

0 -2 1

0 0 1/2

rank() = 3s = 3

A C

B

1 1

2 3

1 1

158

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 how to test?

 rank() = s – 1 (s stands for the number of actors on the graph)

• necessary condition for the existence of a PASS

1 -1 0

2 0 -1

0 2 -1
 = =

1 -1 0

0 2 -1

0 0 0

rank() = 2s = 3

A B

C

1 1

1 1

2 2

159

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 slightly more complex example

B

D

1

2
3

2

C

A

3

41

3

2

1

6

-2 0 0 1

-1 0 2 0

0 1 -3 0

0 4 0 -3

3 -2 0 0

 =

160

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 slightly more complex example

B

D

1

2
3

2

C

A

3

41

3

2

1

6

2

3

1

4

q =

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

… many more

BC … is not valid

161

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 slightly more complex example

B

D

1

2
3

2

C

A

3

41

3

2

1

6

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

… many more

Which one should I

choose?

162

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 how to choose a schedule?

B

D

1

2
3

2

C

A

3

41

3

2

1

6

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

… many more

single appearance

schedule

may require
larger
buffers

163

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 how to choose a schedule?

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

… many more

single appearance

schedule

Reconfigurable
HardwareBCDA

useful for a reconfigurable
hardware implementation

164

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow

 Typical uses:
 signal processing

165

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow

Another example:

SDF scheduling in two
steps
• Establish relative

execution rates by
solving a system of linear
equations

• Determine periodic
schedule by simulating
system for a single round

source: Neuendorffer 2004

166

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

source: Neuendorffer 2004

Synchronous Dataflow

167

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow

 Exercise:
 Consider the actor oriented model below following a synchronous

dataflow model of computation. Calculate the balance equations and
find a valid schedule for it in such a way that no actor requires buffers
larger than 3 on its input ports.

A

B

C

D

E

2 1

2

1 1

2 1

2

1
3

3

168

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow

 Exercise:
 2A – E = 0

 A – C = 0

 2B – 2C = 0

 2B – D = 0

 2C – D = 0

 3D – 3 E = 0

 A = B = C = 1

 D = E = 2

 Valid schedules:
 A B C D D E E (requires 6 position buffer at D-E channel)

 A B C D E D E (all buffers have 3 positions or less)

A

B

C

D

E

2 1

2

1 1

2 1

2

1
3

3

169

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Course Outline
 On-Chip Multiprocessing

 motivation, review

 Application-specific Multiprocessor Platforms
 validation, concurrency issues, application-platform mapping

 Platform models
 evaluation, accuracy

 Application models
 concurrency

 Joint execution of application and platform models
 case study

 Background theory and tool support
 actor orientation, Ptolemy II, custom made extensions

 demo

170

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application Modelling
 Extending actor-orientation with types and explicit ordering

 UML suitable visual representation for the definition of polymorphic type
systems (class diagrams) and ordering relations (sequence diagram)

 but UML is not an executable specification language

?

171

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

UML sequence diagrams within actors

 Recall the formal definition of MSC

 tuple P, E, C, l, m, <  where

 P is a finite set of processes

 E is a finite set of events

 C is a finite set of names for messages

 l: E →T = { p!q(a), p?q(a), p(a) | p≠q  P, a  C }

 m: S →R

 <  E  E is a acyclic relation between events consisting of:

• a total order on EP for every p  P, and

• s < r, whenever m(s)=r

172

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

UML sequence diagrams within actors

 Recall the formal definition of MSC
 order of events (message occurrence) within a process (lifeline) is a

total order

 the reflexive-transitive closure of < (denoted as <*) is a partial order
on the complete set E

 enough for the definition of an untimed model of computation

 different possibilities were explored and integrated as a library of
directors on an extended version of Ptolemy II

173

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application modelling
 Application modeling based on behavioral patterns and

polymorphic type systems

constraints to concurrent
execution described using
UML

application functionality
described using actors

174

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Platform modelling

link

router

producer

consumer

router ports

local

north

west east

south

C D

A

B

E

F

G

