THE UNIVERS]TY@‘%#(

Design and Validation of
Application-specific
Multiprocessor Platforms based on
Networks-on-Chip

Leandro Soares Indrusiak

Isi@cs.york.ac.uk
http://www-users.cs.york.ac.uk/Isi

CREDES Workshop — Tallinn - September 2010

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

About the speaker
= Leandro Soares Indrusiak

» born in Santa Maria, RS, Brazil in 1974
» Electrical Engineer, UFSM, Santa Maria, 1995
» MSc Computer Science, UFRGS, Porto Alegre, 1998

» Dr.-Ing Computer Science, jointly issued by UFRGS and TU
Darmstadt (Germany), 2003

» 1998 - 2000 Lecturer in Computer Science

PUCRS, Uruguaiana, Brazil
» 2003 - 2008 Research Fellow in Microelectronics Design

TU Darmstadt, Germany
» 2008 - Lecturer in Real Time Embedded Systems

University of York, UK

THE UNIVERSITY 0_)%?;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

York - Location and history

= York is 200 miles north of London
» London: 2 hours

» Manchester airport: 1.5 hours
= Ancient city — historic capital of north — with over

2,000 years of history and heritage, and
outstanding quality of life

THE UNIVERSITY 0)%7}’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Heslington West

A o el 1

THE UNIVERSITY 0‘)%7;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Heslington East — Phase 1

P~

I LLLS,

I lw"p m

Ry
\ =y \
1 -'gi W'EI
1) [I |
1 | =
1 !

THE UNIVERSITY 0‘;%7;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

York’s position

UK top 10

World top 100

UK University of the Year 2003

Queen’s Anniversary Prize 1996,
2006 & 2008, 2010

Computer Science, Plant Biology,
Health Economics, and Social Policy

“One of Britain’s academic success
stories, forging a reputation to rival
Oxford and Cambridge in the space of
40 years” Sunday Times

“The Cambridge of the North*

Financial Times

THE UNIVERSITY 0‘)%7;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Computer Science at York

= |n numbers

» 38 full-time academics (lecturers,
senior lecturers, readers, professors)

» 400 undergraduates (BEng, MENQ)
» 130 taught postgraduates (MSc)
» 100 research students (PhD)

= Consistently ranked among the top CS
departments in the UK

* Teaching judged “Excellent” by HEFCE E -

= Majority of the department’s research
judged “world leading” or
“Internationally excellent”

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Computer Science at York - Teaching

= Undergraduates

Computer Science
Computer Science with Embedded Systems

Computer Science/Mathematics (Equal)

Computer Science
Computer Science with Embedded Systems

Computer Science/Mathematics (Equal)

Computer Science with Embedded Systems
Computer Science and Software Engineering

Mathematics / Computer Science (Equal)

Computer Science with Embedded Systems

Computer Science and Software Engineering

Mathematics / Computer Science (Equal)

THE UNIVERSITY 0\;‘%775(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Computer Science at York - Teaching

= Graduates

MRes in Computational Biology
MSc/ Diploma/ Certificate in Gas Turbine Control

MSc in Information Technology

MSc in Natural Computation

MSc/ Diploma/ Certificate in Safety Critical Systems
Engineering

MSc in Software Engineering

Certificate in System Safety Engineering

MSc in Computer Science (by research)
MPhil and PhD

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Computer Science at York — Research

¥ Parallel Architectures P Enterprise Systems

F Quantum Computing

F Neural Metworks F Computer-Based Learning ¥ Bio-inspired Computing

¥ Dedicated Hardware F Wirtual Working ¥ Self-organising Systems

Artificial Intelligence

Constraint Programming

-

b Safety Analysis ¥ Object Recognition

High Integrity Systems Engineering Computer Vision

-

Computational Linguistics P Bequirements Asseszment P Shape Analysis

-

Adaptive & Learning & Certification Yisual Learning

Agents ¥ Formal Method Support ¥ Probabilistic Metworks
b Games & Interactive

Drama

Real-Time Systems Programming Languages & Systems Human-Computer Interaction

¥ Complex Embedded ¥ Functional Programming » Engagement & User ‘ §
Systems » Concurrency Models Experience ’ ¥

F Timing &nalysis b Reactive Systems Design ¥ Multimodal Interaction

¥ Frogramming Languages ¥ Graph Transformation ¥ Interactive Clesign “

¥ Operating System Kernels ¥ Interfaces for Disabled Users

THE UNIVERS]TY@‘%#(

Design and Validation of
Application-specific
Multiprocessor Platforms based on
Networks-on-Chip

Leandro Soares Indrusiak

Isi@cs.york.ac.uk
http://www-users.cs.york.ac.uk/Isi

CREDES Workshop — Tallinn - September 2010

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Outline
= On-Chip Multiprocessing

» motivation, review

= Application-specific Multiprocessor Platforms
» validation, concurrency issues, application-platform mapping

= Platform models
» evaluation, accuracy

= Application models
p concurrency

= Joint execution of application and platform models
» case study

= Background theory and tool support
» actor orientation, Ptolemy II, custom made extensions

» demo

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Outline
= On-Chip Multiprocessing

» motivation, review

= Application-specific Multiprocessor Platforms
» validation, concurrency issues, application-platform mapping

= Platform models
» evaluation, accuracy

= Application models
p concurrency

= Joint execution of application and platform models
» case study

= Background theory and tool support
» actor orientation, Ptolemy II, custom made extensions

» demo

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

The problem with CMOS

10000000

= CMOS limits can be felt in
many Ways 1000000
» number of transistors

transistors (x 103)

100000

» clock frequency

» power dissipation 10000 clock freq. (MHz)

= Expectations of
performance increase
must be met somehow

» on-chip multiprocessing
seems to be the best shot

10

power (W)

1970 1980 1990 2000 2010

THE UNIVERS]TY@C\%#(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

On-chip Multiprocessing

/ i
/
chip area (mm?) 33 6.76* A 433*
transistors (x103) 29 9600* 681000
technology (um) 3.0 0.9 0.9

* estimation by C.Killebrew

PE

Il

HENENENNN N
HENNENRNN
HENNENENRNRN
HENNENRNN

Intel 8086 Tilera Tile64
(1978) (2008)

THE UNIVERSITY 0‘)%7;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

On-chip Multiprocessing

= Many architectural alternatives

» homogeneous vs. heterogeneous
processing

1w

» shared memory vs. distributed memory

» on-chip interconnect
 point-to-point, crossbar
* on-chip bus
* network-on-chip

I I
CaT oy arascardl

]

-],_ '.1_ B '{ﬁ

Y nd 6 B

T

-~

- .."-
¥

;
g
!

[4
|

__|ill ::l..ll,._!l'::

=L

._._'ill e

source: Intel

THE UNIVERSITY 0_)%?;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Multiprocessor Platforms for Embedded Systems

= Cell Processor

. . Il Broadband Engine P
« nine processing elements: one Cell Broadband Engine Frocaeeor

Power Processor Element (PPE) and
eight Synergistic Processing
Elements (SPE)
* PPE has separated | & D L1 cache
(32KB each)
» Each SPE can only access its
256KB of local storage (LS) and uses
its memory flow controller (MFE) to
perform DMA operations to/from LS
(non-blocking)
» Bandwidth (3.2 GHz)

* SPE <-> LS = 2x 25.6 GB/s

* MFC <-> EIB = 2x 25.6 GB/s

* MIC <-> EIB = 2x 25.6 GB/s

e L1<->L2=2x51.2GB/s

4 |
:ﬁ-_
ok
i
0
o

THE UNIVERSITY 0_)%77’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Multiprocessor Platforms for Embedded Systems

= ARM Cortex-9 MPCore =R=N=R=l=l=E==t==R=1=

ARM CoreSight™ Multicore Debug and Trace Architecture
 can have 1-4 Cortex-A9 cores with

separated | & D L1 cache (32KB rruneon | (FIM | reuneon (|FIM | rpumean || IV reurvean| IV
each)

» data caches of all cores are fully Cortex-A8CPU | | Cortex-AQCFU | Cortex-A9 CPU | | Cortex-A9 CPU
coherent

. |nterface to external Components be |-Cache | |D-Cachs| | I-Cache| |D-Cache| |I-Cashe||0-Cache| | I-Zachc||D-Cache

made cache-coherent
* on-chip interconnect based on
AMBA standard

Snocp Control Unit {SCU)
Generic

Interrupt Contral

= Acroeleratar

Ccherence
Cache-2-Cache
Transfars

and Distribution

EInEeEsEsEnEeEnEeEeENEN
R S [[[y [y

THE UNIVERSITY 03%7;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Multiprocessor Platforms for Embedded Systems

= ARM Cortex-9 MPCore — TI OMAP 4 Platform

Trace |Emulatorj NOR | NAND
analyzer | pod flash | flash LPODR2

High-5peed
we20ta ™

MIP[™ C51-2 W Camera

MIPI™ CS1-2 Mg Sub camera
OMAP44x

ARM ARM VA3 Hardware
~-A9 | Cortex™-A9
MPCore™ | MPCore™ accolerator

POWERVR™ SGX540 Image Signal
graphics accelerator Processor (ISP)

Shared memory controller/DMA

Timers, Interrupt controller, mailbox

g

Boot/secure ROM

M-Shield™ Security Technology: SHA-1/MD5,
DES/3DES, RNG, AES, PKA, secure WOT, keys

MMC/SD
n;ﬂr:j Aix WUKGA

HD
television

DDR2 Controller 1
DDR2 Controller 2

Y4
G
0
>
S
©
=
%)
—
2]
®)
o
Z
c
o
°
b}
2}
®©
o]
%2}
=
| .-
o
=
<
ol
S
o
)]
[%5]
]
&)
o
S
Q.
m
>
p=
=
5=
&
)
Q.
P
c
Q
+—
©
9
[=1
Q.
<

DDR2 Controller 3

Multiprocessor Platforms for Embedded Systems
= Tilera TILEPro64

THE UNIVERSITY 0_;%7;’(

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Multiprocessor Platforms for Embedded Systems

= As the number of processing
elements increase, on-chip
communication becomes a major

ISsue
PE PE PE
» point-to-point: huge area overhead z&
PE PE PE
» on-chip bus: doesn’t scale (restricted
parallelism) " " "
D
» in both cases: long wires cause timing
PE PE PE

Issues and excessive power
consumption

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Multiprocessor Platforms for Embedded Systems

= Networks-on-Chip (NoC)

» multi-hop, packet-based
communication

PE PE PE

» scalable, high bandwidth \o

» low power (shorter wires)

P

PE P

» distributed arbitration

—0
& o0 o

» regular, reusable

P PE P

» supports GALS paradigm

0—0-
- 2

» communication latency
» area

» complex to design

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Multiprocessor Platforms for Embedded Systems

= Networks-on-Chip (NoC)

arbitration ~ PE PE PE

routing
&

|:> transmission|
Gatam > T 11— control

PE |N~_ | PE P
1

PE —TPE P

Aot oua

& o0 o

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Outline
= On-Chip Multiprocessing

» motivation, review

= Application-specific Multiprocessor Platforms
» validation, concurrency issues, application-platform mapping

= Platform models
» evaluation, accuracy

= Application models
p concurrency

= Joint execution of application and platform models
» case study

= Background theory and tool support
» actor orientation, Ptolemy II, custom made extensions

» demo

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-specific Multiprocessor Platforms

* Fundamental questions

» can | meet the constraints of a given application A
If | run it over platform P?

» performance and timing
* power

» N0? isn’t there a way to optimise it?

* mapping and scheduling
 voltage and frequency scaling

» yes? can | guarantee it?

* hard/soft real-time

THE UNIVERSITY (f/iﬁn’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-specific Multiprocessor Platforms

" Many architectural Application Spac
alternatlves Applicatign Instance
: Platf
» large design space Mapping "
» hard to evaluate which alternative ¥ Semantic Platform
platform is the optimal match for Platform
the requirements imposed by a Designipafﬁ
Xpo

given application

Platform Instance
Architectural Space

Alberto Sangiovanni-Vincentelli

= Application-platform mapping
plays a critical role

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-specific Multiprocessor Platforms

application platform

= Application-Platform
mapping isn't really a
problem when dealing
with sequential
software and
uniprocessor hardware

N
~

THE UNIVERSITY o0f ok

In parallel and

computing

IEEE TRANSACTIONS ON COMPUTERS, VOL C3, MO 1 MARCH |95

Application-specific Multiprocessor Platforms based on NoCs

Application-specific Multip

= |t has been studied for
decades by researchers

distributed

On the Mapping Problem

SHAHID H. BOKHARI, MEMBER, IE

Abstract—In array processars it is impartant to map problem
modules onto processars such that modules that communmicate with
ench other lbe, as far as possible, on adjascent processirs. This mapping
problem is formulated in graph theretic terms and shown to be
exquivalent, in ity form, L i
The problem is also very similar to the bandwidth reduction problem
for sparse mutrices und to the quadratic sxsignment problem.

Tt appears unlikely that an efficient exact akgorithm for the general
mapping problem will ever be found, Rescarch in this area must con-
centrate om efficient heuristics that find good soluthons in mwost cases.
A heuristic algo that proceeds by sequences of pairwise inter-
changes alternating with probubilistic jumps is described. This algo-
rithm has been used to sobve practical mapping problens on a specific
array processor {the finite element machine) with good results. Results
for a set of practical problems are tabulated, several of which are il-
Iustrated.

Index Terms— Adjacency matrices, aray processing, assignment,
computer networks, distributed processors, finite element machine,
graph isomorphism, heuristic algorithm, mapping problem, pairwise
interchange.

L. INTRODUCTION

OST arrays of T arci letely

that is, a direct link does not connect each pair of
processors, The reasons for this include: 1) the Fact that the
total number of links in completely connected systems in-
creases as the square of the number of processors—a growth
rate that is unacceptable in most cases, and 2) the number of

a heuristic algorithm that has been developed to solve this
problem for a specilic array processor, We start by giving a
mathematical formulation of the problem in Section 11 In
Section 1T we show that in its most general form the mapping
problem is equivalent to the graph isomorphism problem, one
of the classical unsolved combinatorial problems. We point out
the similaritics between the mapping problem and the band-
widih reduciion and quadratic assignment problems. Exact
solutions for er of these problems exist and they are solved
approximately using hewristic algorithms,

In Section IV we describe how the mapping problem arises
when solving structural problems on the finite element machine
{FEM), an array of processors currently under development
at NASA Langley Research Center. In Section V we deseribe
a simple heuristic algorithm that has been implemented and
used 1o find mappings for the finite element machine with very
encouraging results. Results for a number of test cases are
tabulated, several of which are illustrated

I MATHEMATICAL FORMULATION

Let the graph of the problem to be mapped onto the array
be denoted Gy = {Vp, Ep), where the nodes or vertices ¥y
correspond to the set of modules and each edge (x,) & Ep

platform
3

PE

application
1

rocessor Platforms

platform
1

platform

applicatiq

L. S. Indrusiak

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-specific Multiprocessor Platforms

mapping is a critical)
- - PE PE
ISsue when it comes to
multiprocessor

platforms

PE PE

application platform
= Application-Platform /\ J

REALLY?

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-specific Multiprocessor Platforms

Sources: Gordon ASPLOS’'06, Kudlur PLDI‘08

512}~ = . D\
Unicore : .
256 PicoChip AMBRIC
Homogeneous Multicore ?
, CISCO CSR
128H Heterogeneous Multicore \VIDIA Gﬁo
64 Larrabee
32
RAZA

XLR Cavium
RAW , , ,
I I Niagara ‘ Q = ! =

Opteron 4P wD Fusion

cores/chip
H
o

BICM 1480

XHjox 3604, Xeon
Power4 PA880(Power6

— eeeee

S Core2Duo

1 M = — —

anjum Itanium?2

N A~ 00

1975 1980 1985 1990 1995 2000 J \2005 2010 /

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-specific Multiprocessor Platforms

application platform
= Application-Platform
mapping is a critical |
issue when it comes to >£ i

e |

|

\ \\“\ Ml

multiprocessor
platforms

must be able to
explore concurrency at
the application level

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-specific Multiprocessor Platforms

application platform

= Application-Platform
mapping is a critical
ISsue when it comes to
multiprocessor
platforms

T

can be done
dynamically to improve
performance or to
Increase dependability

THE UNIVERSITY O;F/(m.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-Platform Mapping

= The simplest formulation of the mapping problem
resembles a graph isomorphism problem

» application is a graph G = G(A, C), where a;e A is an application task
and ¢;; € C represents the communication from & to &

» platform is a graph g“ = G(B, D), where b, € B is a processor and d;;
e Drepresents the channel from b; to b,

» objective is to map tasks onto processors such that task that
communicate with each other lie on adjacent processors

= There is no known polynomial time solution for the
graph isomorphism problem — NP-hard

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-Platform Mapping

= More sophisticated problem formulations may include
additional information to the application and platform
graphs, so that different objectives can be met

platform:
processing power of b,
power consumption and latency of di,j

application:
computational cost and deadline of a,
volume, max latency and required bandwidth of c;;

» objectives: reduce bandwidth requirements on the platform, reduce
power consumption, balance thermal dissipation, etc.

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application-Platform Mapping

* Platform models over-simplify the complex design space
of on-chip multiprocessor platforms

= Application and Platform models disregard the temporal

dimension
» must include further details on time and concurrency

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Outline

= On-Chip Multiprocessing

» motivation, review

= Application-specific Multiprocessor Platforms
» validation, concurrency issues, application-platform mapping

» Platform models
» evaluation, accuracy

= Application models
p concurrency

= Joint execution of application and platform models
» case study

= Background theory and tool support
» actor orientation, Ptolemy II, custom made extensions

» demo

THE UNIVERSITY (g‘/iﬁrk Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Platform models

= How to evaluate the quality of platform alternatives?

= HDL-based approach

» cycle-accurate model of the platform

* hard to create, debug and modify
» synthesisable

» traffic generators

» DE simulator

THE UNIVERSITY 0\)‘%775(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Platform models

= How to evaluate the quality of platform alternatives?

= Abstract NoC models
» cycle/flit-level accuracy

» PAT (payload abstraction)

» static analysis
» hybrid
(5
= Modelling trade-offs T

» accuracy L= e | & |

il a:t B = o] o &l ol o] o] o] o] &l o (v
> Observab”lty || AN DL E e © || Bl 0 G & ol &]] & & | &f & 2] / —/—C
» simulation speed VA VA

| Z B | /

E file:/D:/code/ ptIl/lsi/noc/argus/argus_6x6.xml

File Wiew Edit @raph Debug Help

| @@ ||l ne
) Utilties ==
) Directars

) Actars

) MareLibraries
) UserLibrary

E PowerScope

E HotSpotScope

1]

gPDintTDPDintSEDDE
L

40

IA"“

*

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Platform models

= Simplified models

» PAT

* packet-level accuracy, 1-position buffers
e complete packet is abstracted by header and trailler

* header's way through the network is fully simulated, trailler latencies are
calculated
* less than 5% error for average latency (compared with cycle-accurate HDL)

» real-time analysis

 priority-based virtual channels
 static analysis of worst-case interference between network flows

» hybrid model - transaction-level (TLM)

 priority-based virtual channels
« analysis of interference between network flows

* less than 10% error for average and worst case latency (compared with cycle-
accurate model)

THE UNIVERSITY 0_)%77’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Platform models

= Simplified models

o / —— — v 100000 e CA
el TLM
10000 10000
== TLM
1000 1000
100
100
10
10 ——
1 L] 1]]] 1 1 1
1 1 T T T 1
1 2 4 8 20 200 800 1400
20 40 60 80 100
application simulation time (s)
application simulation time (s) time (s) cycle-accurate TLM
flows cycle-accurate TLM ; 1465.18 7.67
20 17105.42 5.47 " 2895.69 7.89
40 31490.13 19.17 . 5978.32 7.98
60 55561.87 45.78 2 11806.91 8.28
80 70231.76 83.06 »o0 29927.24 22-;;
100 86626.07 105.28 ’
800 86.29
1400 169.06

THE UNIVERSITY 0‘)%7;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Platform models

traffic
generator

traffic
generator

traffic
generator

traffic
generator

traffic
generator

SVESE

prototyping

THE UNIVERSITY 0‘;%7;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Platform models
= But how useful are those traffic generators?

traffic
generator

traffic
generator

traffic
generator

traffic
generator

traffic
NoC generator

» critical point if we are targeting application-specific platforms

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Platform models

= Can we have models of actual processors, OS and
application software?

NoC < PE

» yes, but it will be slow to simulate and hard to debug/modify

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application models
= \We use an application model instead

Application Model

G

-

N\
@@i}

NoC

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Course Outline
= On-Chip Multiprocessing

» motivation, review

= Application-specific Multiprocessor Platforms
» validation, concurrency issues, application-platform mapping

= Platform models
» evaluation, accuracy

= Application models
p concurrency

= Joint execution of application and platform models
» case study

= Background theory and tool support
» actor orientation, Ptolemy II, custom made extensions

» demo

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application models

= Main focus on
} concurren Cy mo d e I F#file:/D:/Romualdo/Mestrado/Modelos pt. . .e_recei ’_‘@ ' 1 ol x

File View Edit Graph Debug Help

_ adad@la|@|p [n[e|»|N
} Inter‘process || Utiities g [1

|| Directors SDF Director
T | einput wrel! wemnge 1

communication S e > s
behaviour s

~Symbol_Rate){Chip_Rate*10%SNR/0)))

iver

= Executable Bo——{EoF—

=
e \\§
i -
= b
- %
- ~
- “-‘
{5 - ~
- -~
-
S WCDMATansmi - ~
-
‘ - ~
=) s
= -
”‘ ‘-\‘q
- -
-
- - s
put

FixToDouble

THE UNIVERSITY O;F/(m.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application models
= Many concurrent
programming models
available
» threads

application

» concurrent processes with
message-passing

-

'%

-

» actors

» streams/dataflow
» CSP
» timed automata

QD
g
2
=
Hi
—

» <add your favorite here>

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application models

=The choice of which

_ model tools
concurrent programming
model should be adopted threads libraries in
depends on Java and C++
4 application domain message OpenMP
» familiarity by the passing
designer/developer actors Simulink
» availability of stable flows and Ptolemy
tools streams / Streamlt,
dataflow CUDA
» predictability, and ability to timed UPAAL
match underlying HW/SW automata

Application-specific Multiprocessor Platforms based on NoCs L. S. Indrusiak

THE UNIVERSITY o0f ok

Application models

directors

+

composite
actor

actor

Photogrammetry Snapshot Request
} } r,.,m;n.m,“ }r,mm,z} ‘n,m;\m«y;‘ MainGontoler ‘mm‘ Coametute
T oeOnec) | 7 T aersio | T 7

gerrame) | captueinage(| |
i —
GetFiame |
T [— i
o) ! ! !

adgeDetacton)
i Obstacle Recognition

i fiss QUMMod extends Typeditomichetor {

===

GetUlasoncDistancoReadng()

/#% Creates a new instance of QAN *+/

Direction Adjustment

‘gulObjects)

[pwomonc] - ommtn] [imsets] [somtones]

Tyre Pressure Adjustment

T ‘GelGPSSensorReadngl)

Py
o OsadeOrecion |

SelDirecton(Directon di)

Retuir

\m\‘
|

getPressure()

SeiPressurelint prossure) H

- ReCuir
VibrationSenzor

RaCnie
ltrasonic Sensor

1

| ah B—
—tﬁ fowiias ot

FEUBiE =

public QAMMod (CompositeEntity container,
throws NemeDuplicationException,

super (container, name);

// input Port

input = new SDFIOPort (this, "input”.
/foutput Ports

regsm = mew TypedIOPort (this, "regam”

String name)
IllegalictionExceprion {

true, false):

false, true);

imcn = mew TypedIOPOrt (this, "imgam”, false, true)!

// Parameter

order = mew Parameter this, "order”,
order.setTypeEquals (BaseType. INT) ;
7/ debug

new IntToken(4)):

i @i = new TypedIOPort(this, "ai", false, true);:
1% ag = new TypedIOPort(this, "ag", false, true);:

_attachText ("_iconDescription”, "<svgrin"

. + "erect MeFOVT p=\ ez
Pt T + "yidth=}"60%" height=)"ag)\"
E + "style=i"E£illiwhitel"/>yn"
4%% SpeedControl + "<polygon points=\"-20,10 20,-10 20,10 -20,-104%" "
+ "atyle=iTEilliblush /xint
+ el svgyin

53

THE UNIVERSITY @Fim;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application models

directors
T

1
v

[P ﬁ,
(J Sy

E <
N
=15

y
| composite
H actor

actor

» captures the concurrent behaviour of the application
« completely independent from the platform model

« for a given mapping, it can be jointly executed with the
platform model

e joint execution allows back-annotation of performance
and power consumption figures

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Course Outline
= On-Chip Multiprocessing

» motivation, review

= Application-specific Multiprocessor Platforms
» validation, concurrency issues, application-platform mapping

= Platform models
» evaluation, accuracy

= Application models
p concurrency

= Joint execution of application and platform models
» case study

= Background theory and tool support
» actor orientation, Ptolemy II, custom made extensions

» demo

THE UNIVERSITY @Fim;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Joint execution of application and platform models

L . o I N
p a W IV = | L
/ o j
/ J NI oy
S \ g

THE UNIVERSITY (f/iﬁn’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Joint execution of application and platform models

PE \E PE

-
N

THE UNIVERSITY (g‘/iﬁrk Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Joint execution of application and platform models

[. ¥ o [ID_2|I r"\‘ e |
AT % ELIN
d ’ /I'l “\\ "\\ E \ g
/ \\ I N\
/ N\
PE E EI
S %l
PE PE

THE UNIVERSITY @Fim;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Joint execution of application and platform models

Mapping X

Mapping Y

Mapping Z

THE UNIVERSITY 0f Yok

Application-specific Multiprocessor Platforms based on NoCs |

L. S. Indrusiak

Case study

= Application model
» autonomous vehicle

» model based on actors and
message sequence charts

= Platform models
» analytical

» hybrid
» cycle-accurate

model

transform L+
Joint i
execution &

application LML Actor
model model miodel
executable Actor model Actor
application UML model model
model I—I
mapper : -_ |
platform model
simplified (analytical)
platform model
cycle-accurate (heytoric)]
platform model |
{simulation) {:_ | 1

platform model

platform
template

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Case study

= Application model P ————
_ - -1 |
» autonomous vehicle Ny P |
» model based on actors and B — —
message sequence charts 0 i
= Platform models = ’i-rijﬁn_ ==l
» analytical I — | S W TR
* hybric — 0 1 I
» cycle-accurate h‘f o= &= gl &

THE UNIVERSITY 0_)%77’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Case study

Photogrammetry Snapshot Request Direction Adjustment
' getObjscts{) : : ! gelEnapshed]) ! | . | - : alG ﬁssl:rlﬁurri-.ei!d—lrl;l:l : - :)
1] | 1 1
. S . L i 1 -
gelFrame() capturelmage() E E | | |
e -+ 1 1
! gatFramal) E getDiraction]) | |
- ! | ! I s ! |
petFrame]) ! 1 | | 1 !
. e i - . r T 1
1 sendlrmageilmage i) H getlbsacieListiDirection d) | i '
: : i il : :
filter() | 1 1 setDiraction{Diracton dir) E E
— | ! ! : -
| | :
[-mgr:DJ!Inrlmm:] : ' T i
" Obstacle Recognition Tyre Pressure Adjustment
—
gelFeabures|) | 0 el & ritart | Bh rammalng | MEnControllar Sensorinterimce | TyraPressuraGonire: |
] "
" getUitrasonicDistanceReading() ! :IB‘IIVh'aIICIHSEHE\:-‘ﬂEINIng(_]
| L] - - -
L | |
' ' gelCbjacts() i getPressurel)

satPrassuna|int prassung)

1

THE UNIVERSITY 0‘;%7;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Case study

0.9
0.8
0.7
0.6
0.5
0.4

0.3
0.2

0.1
0

DA OR P SR TPA

Mapping 2 4x4 MW Mapping 3 4x4

W Mapping 1 3x3 MMapping 2 3x3 B Mapping 3 3x3

. Communication Latency (ms)
Interaction
Abstract Hybrid Cyele-accurate

OR 0.04 0.09 012
TPA 0.07 0.09 0.14
DA 024 027 039
SE. 0.68 094 133
P 071 0.99 141

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Course Outline
= On-Chip Multiprocessing

» motivation, review

= Application-specific Multiprocessor Platforms
» validation, concurrency issues, application-platform mapping

= Platform models
» evaluation, accuracy

= Application models
p concurrency

= Joint execution of application and platform models
» case study

» Background theory and tool support
» actor orientation, Ptolemy II, custom made extensions

» demo

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Ptolemy Il

File view Edit Graph Debug Help

FEEEEETE N REEDY

simulation framework =

i e [E]
developed at UC E
Berkeley

= Focus on modeling

Ramp2

AddSubtract

XrPlotter2

Gaussian

concurrent components ':Hj[:

execution finished
";!fiIe:,-"E:,‘-"software,‘-"Ptolemy 'jﬂ.o[dn1.xYPlotter -0 LI
File Help File Edt Special Help
- - EL il
& QAN java j XYPlotter JJJJ
. T T T T T]
* Created on 5 de abril de 2004, 10:42 1 .h 2. ‘”x.; .’ "” -» ;‘:‘
w ol Aoy Lwﬁﬁt.p- » -i-'n:]
Pk 2T AR Y 4
= http://ptolemy.eecs.berkeley.edu ot EAES L pITAlEs
inport ptolemy.actor.I0Port: i* A » T i; *’%". ‘ﬁ*-f.
inport prolemy.actor. Typeditonicictor ar N g 2.’ | by 1
import ptolemy.actor.TypedI0Port; L A P ’ ol wnd g gt ps W
import ptolemy.domains.sdf.kernel. SDFI0OPore: K . | ! “.‘. -‘ " “z ;’z 1
linport ptolemy.data.Taken; ﬁ'&'av » ’g .w’. -
inport ptolemy.data. IntToken: -0 & ‘ (“ g - f - 4
inport ptolenmy.data.MatrixToken; 15 o -.z Mlsn-z * q.-.s. M
import ptolemy.data. IntMatrixToken; *‘-“ L 4 " ¥ - - ¢
import prolemy.kernel.CompositeEnticy; L : L . L L
g s ke e - I _ILI 15 -10 -5 0 5 10 15
4 [

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Ptolemy Il

/,.—annotation
SEVF Prrector N/
director— Generate a sine wave,
) | =r _> equency: 4+40.0
port/parameters (i
= [:>> phade: 0.0
actor
[port
P Y
At Guhirac TrigFunehon i
gin +» < external port
relation
. /
model
Sl
o b

r‘L-—hierar::hin::al abstraction

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Ptolemy Il

-d—— Connection ——p

Link ‘ Link
Relation /(

Connection

S

o}

Connection

R

[.ink

67

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Ptolemy Il

General

String

Matrix

= Data Types

Numerical

BooleanMatrix FixMatrix EgMatrix ComplexMatrix

DoubleMdtrix

/

IntMatrix

Object

Array Record

partial ordering of types

a conversion from one type to
another is allowed if the first type
appears below the second type in
the type lattice (first type is less
than or equal to the second type)

Boolean Sealar

Complex

Long Double

Int

l.
UnsignedByte

UNENOWN

THE UNIVERSITY 0\;‘%775(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Ptolemy Il

= Data Types

outType < inType

.} Int <o v< Complex .
L 1;: Y Complex

p
Double <8 1
Double

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Ptolemy Il

= Functional composition

SDF Director SubclassOfChannel

Channel

>/ />

Sinewave
InstanceOfChannel AddSubtract SequencePlotier

E‘_’ﬂ; +

2

v

v

InstanceOfChann

>/ —

SequencePlotter

InstanceOfChanngl3
— ’p—-d 4

InstanceOfChanngl4
— ”.—-J 0

InstanceOfSubclags OfChannel 27
_,'_J !

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 20

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Concurrency in Ptolemy Il

= Concurrency modelingis
a primary goal of Ptolemy “ %7 e moisicie

| | utilities Display

I
= Based on the concept of
. . L
actor-orientation

» explicit definition of the - ¢
model of time and _._Q"H-,jtt
concurrency

FFT ComplexTaCartesian2 XYPlotler

[D]

AddSubtract

]
____ aaaaaaa ComplexToCartesjend

9.ofdm.x¥Plotter =10l x|

Fie Edt Special Help

» support heterogeneous

& - EEs
models C ansen 1 — _woner SRS
* »,
* Created on 5 de Abril de 2004, 10:42 1 .h zﬁﬁx-‘:ﬁ ":f ;‘:‘
i ” of §IVETIFEETLARISY
» support domain ZI2Te i 4, $9Escd
. , ’ £ B g veny 4 Sa g
| h inport ptolemy.actor.I0Port: | * A » E" “‘*-f. |
po ym O r p IS m import ptolemy.actor.Typeddtonichcror; a L o4 e g 2.- | iy
import ptolemy.actor.TypedI0Port; L .; o ’ ol wnd g gt ps W
imporec proleny.domains. sdf.kernel. SDFI0Pore; -a0 *" ! ‘A." -‘ L [‘ ;’z g 7
linport ptolemy.data.Taken; ﬁ'&'av e g .m’-“' -
inport ptolemy.data. IntToken: -0 & ‘ (“ I! g ‘.f - 4
inport ptolenmy.data.MatrixToken; s o -.z Mlsn-z * q.-.s. M
inmport ptolenmy.data, IntMatrixToken; [*..“ " i v ' - ’ /'
import prolemy.kernel.CompositeEnticy; ! L : L . L L
T (_PILI 15 -10 5 i 5 10 15

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Concurrency in Ptolemy Il

execution semantic

of the top level
model [‘

Al CompositeActor Display

=

execution semantic of
the composite model

A2 A3
port2 | ’ | output CompositeActor

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

= According to Atkinson, Hewitt (MIT, 1977)

» Conceptually an actor is an object which has both procedural and
data aspects

» A process is a totally ordered sequence of computational events
where each event consists of sending a message to an actor

» The actor model of computation has encouraged the development of
a paradigm based on a society of experts communicating by passing
messages

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

= According to Gul Agha (MIT, 1986)

» Actors are computational agents which may function in parallel (have
their own thread of control) and communicate through asynchronous
message passing

» The idea behind actor languages is to provide the syntactic constructs
that can free the programmer from having to worry about the details of
a concurrent execution

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

= How to free the programmer from having to worry about
the detalls of a concurrent execution?

= One way Is to remove unnecessary data dependencies
created by the assignment operation (von Neumann

bottleneck)
R1=3 (@) <—— True Dependence
\
R2=R1+3 (b)
_— <— Anti Dependence
R1=4 ©)
R2=R1+3 (d) <—— Output Dependence

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

= Functional programming allows for the possibility of
concurrent evaluation of expressions in a program

2 (sum (4 5))
2 9

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

= Functional programming allows for the possibility of
concurrent evaluation of expressions in a program

(sum ((mult (
(sum (4 5)) (sum (4 5))

)
(sum (4 5))

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

= Functional programming is unable to address the
problem of history-sensitive behaviors (functions don‘t
keep state)

= Actors avoid assignment operations but allow the
modeling of history-sensitive behaviors

» Gul Agha proposed the concept of replacement, which states that an
actor must specify/create the actor which will handle the next
message/communication

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

mail queue s s = l

<N
creates tasks o \
/7
\ specifies replacement
4 \
\creates actors
\
\
\
\1i
mail queue roron

source: Gul Agha 1986

79

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

= According to Lee (Berkeley, 2004)

» In actor-oriented design, components are concurrent objects that
communicate via messaging, as opposed to abstract data structures
that interact via procedure calls

» Actors are conceptually concurrent, but unlike Agha’s actors, they
need not have their own thread of control

» Although communication is still through some form of message
passing, it need not be strictly asynchronous

THE UNIVERSITY O;F/(m.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actor-orientation

= Actors execute and communicate with other actors in a
model

= A have a well defined component interface, which
abstracts the internal state and behavior of an actor, and
restricts how an actor interacts with its environment

= The interface includes ports that represent points of
communication for an actor, and parameters that are used
to configure the operation of an actor

THE UNIVERSITY 0‘)%7;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actor-orientation

ACTION METHODS
Unpackage Package

Data Data
Process
Data

PARAMETERS i

source: Lee 2004

THE UNIVERSITY @Fim;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actor-orientation

= Actors communicate through channels that pass data from
one port to another according to some messaging scheme

* |In object-oriented design, components interact primarily
by transferring control through method calls, while In
actor-oriented design they interact by sending messages
through channels

= Actors interact only with the channels that they are
connected to and not directly with other actors

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Method-call based:

class name
data What flows through
an object is
r methods 1 sequential control
call return
Actor oriented:
actor name
data (state) What flows through

—) parameters) an object is

streams of data

ports

source: Lee 2004

Input data Output data

THE UNIVERSITY @Fim;’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actor-orientation

= The syntactic structure of an actor-oriented design model
says little about the semantics

= The semantics is determined by a model of computation
(MoC), which define the operational rules for executing a
model

= Such rules determine when actors perform internal
computation, update their internal state, and perform
external communication

= The model of computation also defines the nature of
communication between components

= According to Lee, the MoC is expressed as a Director in an
actor-oriented model

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actor-orientation

/,._-annmati-}n
SDF Director J
director— Generate a sine wave.
) 3[:_}> equency. +40.0
portiparameters <
"Q'E:}) chade: 0.0
Raim actor
[port
=
”iﬂﬁubh‘ﬂm TrigFunctior outgut
Const _ sin + = external port
phae g T
relation
model \
Sinevaiwe

H}EI source: Lee 2005

In‘L-—|'1ieri1rr:hir:,al abstraction

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actor-orientation

. ;camm\% am
= MoCs formalize a platform ﬁ”‘ oo

of well defined execution
semantics that can help
mapping applications onto
Implementation-related
platforms

= Heterogeneous models
can be created through
the hierarchical
composition of different
MoCs

Simulink medels

synchronous™, Giotto models
dataflow modeds sadale : o)

1

I \
|

I\ VHDL programs

I

standard

|] cell

| 1 . designs
|

| FPGA configurations

| executables

T O
\ MiCroprocessors

silicon chips

Java byte code programs

Source: E. A. Lee

THE UNIVERSITY O;F/(m.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Concurrent Models of Computation

= Rules that define how actors behave and communicate
concurrently in a given model

= According to the rule definitions, models can have specific
properties, such as being statically schedulable or time safe

= Examples: Discrete Events, Communicating Sequential
Processes, Continuous Time, Process Networks,
Synchronous Dataflow, Giotto, etc.

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Concurrent Models of Computation
= Models can have different representations of time

» absolute time
* Tis atotally ordered closed temp (K)

connected set
e T = 9:{

I :

t

» discrete time

T temp (K)
e Tis atotally ordered O/'O\O
discrete set ‘
5 IR
t
» untimed
e precedences
 Tis a partially ordered T
discrete set O/\OEO

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Concurrent Models of Computation
= Models can have different representations of time

» absolute time

e continuous time (CT)

» discrete time

» discrete events (DE)

» untimed

» dataflow models
- Kahn process networks (KPN)
- synchronous dataflow (SDF)

THE UNIVERSITY O;F/(m.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Discrete Event (DE)

* In the DE MoC, actors communicate by sending events,
which comprehends a token and a tag
» token is a data value

» tag includes a timestamp and a microstep (used to order events with
the same timestamp)

= Events are processed chronologically according to their
timestamps

= Actors whose available input events are the oldest
(having the earliest time stamp of all pending events) are
activated

THE UNIVERSITY O;F/(m.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Discrete Event (DE)

= Model time is global: all actors share the same
timestamp and microstep

= When actors send a token through an output port, this
token is encapsulated as an event and stored in a global
event queue

= Unlike specified otherwise by the actor, the event is

tagged with the current model time and microstep (actor
processes tokens without delay)

THE UNIVERSITY O;F/(m.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Discrete Event (DE)

= Actors can be activated at arbitrary times by sending
pure events to themselves with a future timestamp (no
need for ports)

= In the global event queue, events are sorted based on
their tags, including time stamps and microsteps

= An event is removed from the global event queue when
the model time reaches its time stamp, and if it has a
data token, then that token is put into the destination
iInput port

THE UNIVERSITY 0\)‘%775(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Discrete Event (DE)

DE Director implements
timed semantics using an

CE Diracior
] ‘___._—-—j event queue

PalssanClock Ramp

o il

Reactive actors
I

=== = A

a 5 10 15 a0 25 an

Signal

Time line

source: Lee 2004

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Discrete Event (DE)

= Simultaneous events

» the execution of events with the same timestamp must be ordered (in
a deterministic way)

» achieve a dataflow behavior for events with the same timestamp

source: Lee 2005

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Discrete Event (DE)

= Typical uses:
» digital systems

» queue systems
» networks
» transportation systems

» commerce

= Similar to:
» VHDL, Verilog, SES Workbench

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Continuous Time (CT)

= Actors represent components that interact via
continuous time signals

= They typically specify algebraic or differential relations
between inputs and outputs, and can be modeled by
ordinary differential equations (ODES)

= Such models are ,solved” rather than simulated

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Continuous Time (CT)

— e+ 1
+ I < | youts
dx Sum1 Integratord

:X|_Ay wouts g T g

dz
—=B+2(x-C
& (x-C)

=

- — = zouts

——»
Froduct

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Continuous Time (CT)

= Solution is a continuous function of time (waveform)

= The precise solution of a set of ODEs is usually
Impossible to be found using digital computers

= Numerical solutions are approximations of the precise
solution

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Continuous Time (CT)

= Numerical solution approximate the state trajectory of a
differential equation by estimating its value at discrete
points

= The choice of the points depends on the function

= Using numerical solvers, the solution is a discrete-event
signal

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Continuous Time (CT)

= Typical uses:
» analog circuits

» plant dynamics in control systems
» mechanical systems
» heat flows

» Communication channels

= Similar to:
» Spice, Agilent ADS, Simulink

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Dataflow Model of Computation

= Dataflow models represent a given system
» as a directed graph

» where each node performs computation (actors)
» and edges represent channels through which nodes can exchange data

(tokens)
(o —(a)——(
(%)

In Von Neumann imperative style, program counter rules the
execution

Dataflow models don‘t define the sequence on which actors are
executed (fired)

Actors can fire when inputs are available (actors without inputs can
fire anytime)
Exposes potential concurrency: data movement rules the execution

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Dataflow Model of Computation

= Actors execute concurrently and communicate by exchanging tokens
through FIFO-buffered channels

» computation performed by a given actor can be described by imperative
language

= Buffers usually treated as unbounded for flexibility
» buffer sizes on final implementation are a design decision

* Read operations are destructive: once read, the token is removed from
the buffer

103

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Dataflow Model of Computation

= Applications of dataflow models
» signal processing systems

» systems dealing with continuous streams of data

>

= Easier to extract parallelism
= Buffered channels are used in such systems anyway

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

* Proposed by Gilles Kahn in 1974
* Processes (actors) communicate asynchronously
through unbounded buffers
» non-blocking write
» blocking read
= A process that reads from an empty channel will stall
and can only continue when the channel contains
sufficient tokens
* Processes are not allowed to test an input channel for
existence of tokens without consuming them

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)
= At any given point, a process is
either doing some computation
(active) or it is blocked waiting for
data (read blocked) on exactly one
of its input channels

» it cannot wait for data from more than one
channel simultaneously

e‘ rite token/Compute

et token

THE UNIVERSITY O;F/(m.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Important property: DETERMINISM

» the sequence of values communicated through the
channels is completely determined by the model

» a KPN can be executed using a completely parallel
schedule, a completely sequential schedule, or any
schedule in between, always yielding the same
output results for a given input sequence

» which process to activate at a certain moment has
to be decided during execution time, based on the
current situation

107

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example _.Q/
~

process f (InFIFO<int> u, OutFIFO<int> v, OutFIFO<int>)
{

int k; wait() returns the next
while (true){ / token in an input FIFO,
k = u.wait(); blocking if it's empty

If (k% 2 =0) v.send (k);

else w.send(k); _
() \ send() writes a data
value on an output FIFO

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example _.@_

process g (InFIFO<int> u, OutFIFO<int> V)

{
Int k;
while (true){
K = u.wait();
v.send (k);

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)
\
= E I
xample /®_

process h (InFIFO<int> 1, InFIFO<int> u, OutFIFO<int> v)
{
Int k; boolean s=true;
while (true){
If (s) then k = t.wait();
else k = u.wait();
v.send (K);
s=Is;}

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

62714 —@/

\@>@

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

@

\@>@

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

()
6271 —»G>/

\@>@

113

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

(2

@ >

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

S

\@>@

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

el

\@>@

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

G

\@>@

117

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

el

\@>@

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

X

\@>@

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

@l

\@>@

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

e

\@>@

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

o

\@>@

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

e

.

123

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

e

\@>Q}

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

e

N

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

e

N

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

e

N

127

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

o

N

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

O

~

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example
O

~

130

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example
e

~

131

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example
e

~

132

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example
e

~

133

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

()

—@<@>®— .

134

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

()

204 @>7®— :

135

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

ﬁ@/@

~

136

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

IO

\
N

137

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

ﬁ@/@

~

138

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

ﬁ@/@

~

139

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

ﬁ@/@

~

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

ﬁ@/@

~

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

ﬁ@/@

N

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

ﬁ@/@

N

143

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Example

ﬁ@/@

N

= Schedule

fffffg,hhg,959,9,hhh

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= A given process is only affected by the sequence of
tokens on its inputs
» it can’t tell whether they arrive early, late, or in what order

» it will behave the same in any case

» the sequence of tokens it puts on its outputs is the same regardless of
the timing of the tokens on the inputs

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

= Schedule must be determined at runtime
» it doesn‘t affect functional behavior

» challenge is to avoid accumulation of tokens

» not all systems can be scheduled without token accumulation

...112112112—>®<g>@_.

» whether a KPN can execute in bounded memory is undecidable

» a number of algorithms can find a schedule to execute a KPN in
bounded memory (if such schedule exists)

 usually require run-time deadlock detection

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

* Proposed by Lee and Messerschmitt in 1987

* Restricted type of KPN useful for modeling simple
dataflow systems

= Constraint: each actor in a model reads and writes a
fixed number of tokens every time it is fired

= Schedule can be statically determined

» simpler and faster implementation of the model execution engine,
bounded memory usage

» deadlocks are avoided

147

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Adequate for signal processing systems

» number of consumed and produced tokens per firing is independent of
the data and known beforehand

—>

D

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Adequate for signal processing systems

» number of consumed and produced tokens per firing is independent of the
data and known beforehand

homogeneous SDF
graph

Delay D — nth token consumed by its successor is the
n-1th token produced by its predecessor
 Initialized with d ,, zero” tokens

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Scheduling SDF

» must respect precedence graph

» no process fired unless all tokens it consumes are available

» valid schedules: ABC, BAC
» invalid schedule: C A B

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Periodic Admissable Sequential Schedule (PASS)

» assumes infinite stream of data

» periodic schedule can be applied repetitively on input stream without
accumulating tokens in the buffers

PASS:
ABCC

O
1 1

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Periodic Admissable Sequential Schedule (PASS)

» formalism to determine PASS

» 1. build the topology matrix I

2 2

el 1 -1 0
- 2 0 1

e2 e3 I'= e2
0 2 1

e3
4—
1 1 =
token consumption is negative

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Periodic Admissable Sequential Schedule (PASS)

» formalism to determine PASS

» 2. determine the relative firing frequency of each node by finding the
smallest positive integer vector g suchasI'q=0

1 1 0 O, 1
2 0 -1 U =0 q-= 1
o 2 -1 Oc 2

153

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Periodic Admissable Sequential Schedule (PASS)

» formalism to determine PASS

» 3. if rates can be established, any scheduling algorithm that avoids
buffer underflow will produce a correct schedule if it exists

1 1
@ el @ - for each node, schedule if 1
2 2

runnable, trying each node 1

once q=
e2 e3 2

- If each node has been

< : > scheduled g, times, stop
<« — —
1 1

PASS: ABCC

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Periodic Admissable Sequential Schedule (PASS)
» not always possible to find a PASS

@1 1@ - | _ B)
1 1

1 0o -1 0
7 0
. 1 2 0 -
0 3 0
2 3 _ -

tokens will accumulate here

rate inconsistency

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Periodic Admissable Sequential Schedule (PASS)

» how to test?

» rank(I") =s -1 (s stands for the number of actors on the graph)
* necessary condition for the existence of a PASS

1 1 — — _ _
(») (<)
| .t 1 0 -1 1 0 -1
= 1 -2 0 _ 0 -2 1
0 3 -1 0 0 1/2
¥Z row echelon
using Gaussian form
elimination

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Periodic Admissable Sequential Schedule (PASS)

» how to test?

» rank(I") =s -1 (s stands for the number of actors on the graph)

* necessary condition for the existence of a PASS

(W —() ‘ 1 ¢ ‘
b T o a >
1 11 1 0 -1 0 -1

re 1 2 0 _ o 2 1
s =3 rank(r) =3

157

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Periodic Admissable Sequential Schedule (PASS)

» how to test?

» rank(I") =s -1 (s stands for the number of actors on the graph)

* necessary condition for the existence of a PASS

1 1 B] —]
A B
Q @ 1 -1 0 d 1 1 0
2 2

s =3 rank(r) =2

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Periodic Admissable Sequential Schedule (PASS)

» slightly more complex example

1 4
B
1 2 0 0 1
3 2 3 1 0 2 0
0 1 -3 0
C O 6 D b= 0O 4 0 -3
2 3 2 0 0
3 1
1 2 B B
A e

THE UNIVERSITY O;F/(m.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Periodic Admissable Sequential Schedule (PASS)

» slightly more complex example

Possible schedules:

1 4
B BBBCDDDDAA
3 Al 3 ', | BDBDBCADDA
3 BBDDBDDCAA
C O 6 D 9= | 1
A ... many more
2 1
1 3 2 -
Al BC ... is not valid

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Periodic Admissable Sequential Schedule (PASS)

» slightly more complex example

Possible schedules:

1 4
B BBBCDDDDAA
3 Al 3 BDBDBCADDA
g g BBDDBDDCAA
C O 6 D
... many more
2
3 1
1 2 .
Al Which one should |
choose?

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Periodic Admissable Sequential Schedule (PASS)

» how to choose a schedule?

Possible schedules:

1 4
B ey requie BBBCDDDDAA
3 2| 3F puffrs BDBDBCADDA
) - BBDDBDDCAA
C O 6 D
... many more
2
2 1
1 . |
Al single appearance
schedule

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow (SDF)

= Periodic Admissable Sequential Schedule (PASS)

» how to choose a schedule?

Possible schedules:

= BBBCDDDDAA
% BDBDBCADDA
% A BBDDBDDCAA
% ... many more
useful for a reconfigurable <\: single appearance
hardware implementation
schedule

163

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow

= Typical uses:
» signal processing

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow

SDF Director

Another example: -
SDF scheduling in two Input__OI8 2Lic output
AT Iy YL
steps R e
» Establish relative
execution rates by (s) Example Mode!
SOlVIn_g a SyStem Of Ilnear input tokenConsumptionRate = 2 = FIR firingCount
equations 1 +FIR firingCount = 3+ FIR2 firingCount
° Determine periOdiC 4+ FIR2 firingCount = output.tokenProductionRate
schedule by simulating (v) Balance Equations
system for a single round FIR firingCount =

FIRZ firngCount =

input tokenConsumptionRate =

o [— (WS]

output tokenProductionRate =

(c) Balance Equation Sclution
source: Neuendorffer 2004

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow

i FIR FIR2 FIR firingCount = 3
o Eel el)

D FIR2 fiingCount = 1
: input.tokenConsumptionRate = 6
t_J,,,_ output.tokenProductionRate = 4

FIR

source: Neuendorffer 2004

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow

= Exercise:

» Consider the actor oriented model below following a synchronous
dataflow model of computation. Calculate the balance equations and
find a valid schedule for it in such a way that no actor requires buffers
larger than 3 on its input ports.

167

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Synchronous Dataflow

= Exercise:
) 2A—E =0
» A—C=0 2 . 1,
) 2B—-2C =0 1 1 E
» 2B—D =0 2 3
) 2C-D=0 1
) 3D-3E=0 2 . 1‘ D |»3
» A=B=C=1
) D=E=2

= Valid schedules:
» ABCDDEE (requires 6 position buffer at D-E channel)

» ABCDEDE (all buffers have 3 positions or less)

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Course Outline
= On-Chip Multiprocessing

» motivation, review

= Application-specific Multiprocessor Platforms
» validation, concurrency issues, application-platform mapping

= Platform models
» evaluation, accuracy

= Application models
p concurrency

= Joint execution of application and platform models
» case study

» Background theory and tool support
» actor orientation, Ptolemy Il, custom made extensions

» demo

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application Modelling
= Extending actor-orientation with types and explicit ordering

» UML suitable visual representation for the definition of polymorphic type
systems (class diagrams) and ordering relations (sequence diagram)

» but UML is not an executable specification language

@ upperBound: 5.0
® lowerBound: 1.0
@ lowerBoundP: 1.0 Dispatcher

Uniform @ upperBoundP: 10.0 4 / r —HiE
wom:am h wll Fie Edit View Help
G — g
: - @@= apie-| < (m|

Y Se
Data Source S - /
- w B == ¢ 5D Director
s e T : '
Clock2 VariableDelay2 =1 |y 5D Directar EESH e DataSource Dispatcher eyGeneration
> Koy Gonart N
4 T T T T
[] : : . ‘
I I I I
: L il IEE) »! ! i
i T | | ' |
i I _msg?

ue '

I

i

I

i

= \:rva ~_ | :
m ‘ :
‘ i :
: 0
i 0
i i
] 0
= _msg3 i
L | .
~ #

170

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

UML sequence diagrams within actors

= Recall the formal definition of MSC

o
= tuple{P, E, C, I, m, <) where
» P is afinite set of processes
» E is afinite set of events
» C is afinite set of names for messages
I E—T={pla(a), p?q(a), p(a) | pq € P, a € C}
m: S —-R
» <c E x E is a acyclic relation between events consisting of.

v Vv

- atotal order on E_ for every p € P, and
* S <r, whenever m(s)=r

171

THE UNIVERSITY of/my.’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

UML sequence diagrams within actors

= Recall the formal definition of MSC

» order of events (message occurrence) within a process (lifeline) is a
total order

» the reflexive-transitive closure of < (denoted as <*) is a partial order
on the complete set E

» enough for the definition of an untimed model of computation

D Director ‘ DataSource ‘ ‘ Dispatcher ‘ ‘ Encryption ‘ ‘Kuy(ium:rulim‘

PO SI

|||||||
€ i

» different possibilities were explored and integrated as a library of
directors on an extended version of Ptolemy Il

172

THE UNIVERSITY Qfl’on’(_ Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Application modelling
= Application modeling based on behavioral patterns and
polymorphic type systems

FUML, DDirector.xm =k}
application functionality VNG A= (A TLEISEIEEEE
- . 1D mi lo DE Director O Ee BlE
described using actors = AR |
lowerBoundP: 1.0 Dispatcher
Uniform s B
: Data Source S5 SeqDiag oz

- = 7y en

o VariableDelay2 i

[L~
constraints to concurrent — .
execution described using : = e ala/=/alp o]z [m|
UML N . \D.m%um\ \\ \m‘p ,,,, | \ |

[— L e b

173

THE UNIVERSITY 0_)%77’(Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Platform modelling

mmml router ports

e

