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York - Location and history

 York is 200 miles north of London

 London: 2 hours

 Manchester airport: 1.5 hours

 Ancient city – historic capital of north – with over
2,000 years of history and heritage, and
outstanding quality of life

*York**YorkYork

*London**LondonLondon
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Heslington West
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Heslington East – Phase 1
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York’s position

UK top 10
World top 100
UK University of the Year 2003
Queen’s Anniversary Prize 1996,

2006 & 2008, 2010
Computer Science, Plant Biology,
Health Economics, and Social Policy

“One of Britain’s academic success
stories, forging a reputation to rival
Oxford and Cambridge in the space of
40 years” Sunday Times

“The Cambridge of the North“

Financial Times



7

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Computer Science at York

 In numbers
 38 full-time academics (lecturers,

senior lecturers, readers, professors)

 400 undergraduates (BEng, MEng)

 130 taught postgraduates (MSc)

 100 research students (PhD)

 Consistently ranked among the top CS
departments in the UK

 Teaching judged “Excellent” by HEFCE

 Majority of the department’s research
judged “world leading” or
“internationally excellent”
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Computer Science at York - Teaching

 Undergraduates
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Computer Science at York - Teaching

 Graduates
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Computer Science at York – Research
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The problem with CMOS

 CMOS limits can be felt in
many ways
 number of transistors

 clock frequency

 power dissipation

 Expectations of
performance increase
must be met somehow
 on-chip multiprocessing

seems to be the best shot
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Tilera Tile64
(2008)

PE

Intel 8086
(1978)

PE

chip area (mm2) 33 6.76* 433*

transistors (x103) 29 9600* 681000

technology (μm) 3.0 0.9 0.9

* estimation by C.Killebrew

On-chip Multiprocessing
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On-chip Multiprocessing

 Many architectural alternatives
 homogeneous vs. heterogeneous

processing

 shared memory vs. distributed memory

 on-chip interconnect

• point-to-point, crossbar

• on-chip bus

• network-on-chip

source: Intel
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Multiprocessor Platforms for Embedded Systems

• nine processing elements: one
Power Processor Element (PPE) and
eight Synergistic Processing
Elements (SPE)
• PPE has separated I & D L1 cache
(32KB each)
• Each SPE can only access its
256KB of local storage (LS) and uses
its memory flow controller (MFE) to
perform DMA operations to/from LS
(non-blocking)
• Bandwidth (3.2 GHz)

• SPE <-> LS = 2x 25.6 GB/s
• MFC <-> EIB = 2x 25.6 GB/s
• MIC <-> EIB = 2x 25.6 GB/s
• L1 <-> L2 = 2x 51.2 GB/s

 Cell Processor
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 ARM Cortex-9 MPCore

• can have 1-4 Cortex-A9 cores with
separated I & D L1 cache (32KB
each)
• data caches of all cores are fully
coherent
• interface to external components be
made cache-coherent
• on-chip interconnect based on
AMBA standard

Multiprocessor Platforms for Embedded Systems
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 ARM Cortex-9 MPCore – TI OMAP 4 Platform

Multiprocessor Platforms for Embedded Systems
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 Tilera TILEPro64

Multiprocessor Platforms for Embedded Systems
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 As the number of processing
elements increase, on-chip
communication becomes a major
issue

 point-to-point: huge area overhead

 on-chip bus: doesn’t scale (restricted
parallelism)

 in both cases: long wires cause timing
issues and excessive power
consumption

Multiprocessor Platforms for Embedded Systems

PE PE

PE PE

PE

PE

PE PE

PE PE

PE

PE

A
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Multiprocessor Platforms for Embedded Systems

Networks-on-Chip (NoC)
multi-hop, packet-based

communication

scalable, high bandwidth

 low power (shorter wires)

distributed arbitration

 regular, reusable

supports GALS paradigm

communication latency

area

complex to design

message

packet

flit

PE PE

PEPE

PE PE
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PE
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Multiprocessor Platforms for Embedded Systems

Networks-on-Chip (NoC)
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Application-specific Multiprocessor Platforms

 Fundamental questions

can I meet the constraints of a given application A
if I run it over platform P?

• performance and timing

• power

no? isn’t there a way to optimise it?

• mapping and scheduling

• voltage and frequency scaling

yes? can I guarantee it?

• hard/soft real-time
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Application-specific Multiprocessor Platforms

 Many architectural
alternatives
 large design space

 hard to evaluate which alternative
platform is the optimal match for
the requirements imposed by a
given application

 Application-platform mapping
plays a critical role

Alberto Sangiovanni-Vincentelli
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 Application-Platform
mapping isn’t really a
problem when dealing
with sequential
software and
uniprocessor hardware

application platform

PE

Application-specific Multiprocessor Platforms
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 It has been studied for
decades by researchers
in parallel and distributed
computing

platform
1

PE

application

2

platform
2

PE

platform
3

PE

platform
4

PE

application
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application
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application
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application

1

Application-specific Multiprocessor Platforms
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 Application-Platform
mapping is a critical
issue when it comes to
multiprocessor
platforms

application platform

PE

PE

PE

PE

?
IDLEIDLE

IDLE

REALLY?

Application-specific Multiprocessor Platforms



30

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Sources: Gordon ASPLOS’06, Kudlur PLDI‘08
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 Application-Platform
mapping is a critical
issue when it comes to
multiprocessor
platforms

must be able to
explore concurrency at
the application level

application platform

PE

PE

PE

PE

Application-specific Multiprocessor Platforms
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 Application-Platform
mapping is a critical
issue when it comes to
multiprocessor
platforms

can be done
dynamically to improve
performance or to
increase dependability

application platform

PE

PE

PE

PE

Application-specific Multiprocessor Platforms
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Application-Platform Mapping

 The simplest formulation of the mapping problem
resembles a graph isomorphism problem

 application is a graph G = G(A, C), where ai A is an application task

and ci,j  C represents the communication from ai to aj

 platform is a graph G‘ = G(B, D), where bi  B is a processor and di,j

 D represents the channel from bi to bj

 objective is to map tasks onto processors such that task that
communicate with each other lie on adjacent processors

 There is no known polynomial time solution for the
graph isomorphism problem – NP-hard
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Application-Platform Mapping

 More sophisticated problem formulations may include
additional information to the application and platform
graphs, so that different objectives can be met

platform:
processing power of bi

power consumption and latency of di,j

application:
computational cost and deadline of ai

volume, max latency and required bandwidth of ci,j

 objectives: reduce bandwidth requirements on the platform, reduce
power consumption, balance thermal dissipation, etc.
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Application-Platform Mapping

 Platform models over-simplify the complex design space
of on-chip multiprocessor platforms

 Application and Platform models disregard the temporal
dimension
 must include further details on time and concurrency
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Platform models

 How to evaluate the quality of platform alternatives?

 HDL-based approach
 cycle-accurate model of the platform

• hard to create, debug and modify

• synthesisable

 traffic generators

 DE simulator
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 How to evaluate the quality of platform alternatives?

 Abstract NoC models
 cycle/flit-level accuracy

 PAT (payload abstraction)

 static analysis

 hybrid

 Modelling trade-offs
 accuracy

 observability

 simulation speed

Platform models
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 Simplified models
 PAT

• packet-level accuracy, 1-position buffers

• complete packet is abstracted by header and trailler

• header‘s way through the network is fully simulated, trailler latencies are
calculated

• less than 5% error for average latency (compared with cycle-accurate HDL)

 real-time analysis

• priority-based virtual channels

• static analysis of worst-case interference between network flows

 hybrid model - transaction-level (TLM)

• priority-based virtual channels

• analysis of interference between network flows

• less than 10% error for average and worst case latency (compared with cycle-
accurate model)

Platform models
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 Simplified models

Platform models
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functional/untimed

Platform models

traffic
generator

traffic
generator

traffic
generator

traffic
generator

traffic
generator

PATflit-levelcycle-accurate

synthesis

prototyping
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Platform models
 But how useful are those traffic generators?

 critical point if we are targeting application-specific platforms

traffic
generator

traffic
generator

traffic
generator

traffic
generator

traffic
generator

NoC
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OS

APP

PE

 Can we have models of actual processors, OS and
application software?

 yes, but it will be slow to simulate and hard to debug/modify

OS

APP

PE

Platform models

NoC

OS
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APP

PE
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APP
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Application Model

 We use an application model instead

Application models

NoC
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Application models
 Main focus on

 concurrency model

 inter-process
communication
behaviour

 Executable
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Application models
 Many concurrent

programming models
available
 threads

 concurrent processes with
message-passing

 actors

 streams/dataflow

 CSP

 timed automata

 <add your favorite here>

application application
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Application models

The choice of which
concurrent programming
model should be adopted
depends on

 application domain

 familiarity by the
designer/developer

 availability of stable flows and
tools

 predictability, and ability to
match underlying HW/SW

model tools

threads libraries in
Java and C++

message
passing

OpenMP

actors Simulink,
Ptolemy

streams /
dataflow

StreamIt,
CUDA

timed
automata

UPAAL
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Application models
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Application models

e

d

b
a

c

composite

actor

directors

actor

w

x
y

j
k

D1
D2 D2

• captures the concurrent behaviour of the application

• completely independent from the platform model

• for a given mapping, it can be jointly executed with the
platform model

• joint execution allows back-annotation of performance
and power consumption figures
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Joint execution of application and platform models
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Joint execution of application and platform models
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Joint execution of application and platform models
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Case study

 Application model
 autonomous vehicle

 model based on actors and
message sequence charts

 Platform models
 analytical

 hybrid

 cycle-accurate
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Case study
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 autonomous vehicle
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 Platform models
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 hybrid

 cycle-accurate
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Case study
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Case study
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Ptolemy II
 Modeling and

simulation framework
developed at UC
Berkeley
 Focus on modeling

concurrent components

 http://ptolemy.eecs.berkeley.edu
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source: UC Berkeley

Ptolemy II
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source: UC Berkeley

Ptolemy II
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source: UC Berkeley

 Data Types

Ptolemy II

partial ordering of types

a conversion from one type to
another is allowed if the first type
appears below the second type in
the type lattice (first type is less
than or equal to the second type)



69

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

source: UC Berkeley

 Data Types

Ptolemy II

outType ≤ inType
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source: UC Berkeley

 Functional composition

Ptolemy II
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Concurrency in Ptolemy II
 Concurrency modeling is

a primary goal of Ptolemy
II
 Based on the concept of

actor-orientation
 explicit definition of the

model of time and
concurrency

 support heterogeneous
models

 support domain
polymorphism
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Concurrency in Ptolemy II

execution semantic
of the top level
model

execution semantic of
the composite model



73

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Actors

 According to Atkinson, Hewitt (MIT, 1977)
 Conceptually an actor is an object which has both procedural and

data aspects

 A process is a totally ordered sequence of computational events
where each event consists of sending a message to an actor

 The actor model of computation has encouraged the development of
a paradigm based on a society of experts communicating by passing
messages
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Actors

 According to Gul Agha (MIT, 1986)
 Actors are computational agents which may function in parallel (have

their own thread of control) and communicate through asynchronous
message passing

 The idea behind actor languages is to provide the syntactic constructs
that can free the programmer from having to worry about the details of
a concurrent execution
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Actors

 How to free the programmer from having to worry about
the details of a concurrent execution?
 One way is to remove unnecessary data dependencies

created by the assignment operation (von Neumann
bottleneck)

R1 = 3 (a)

R2 = R1 + 3 (b)

R1 = 4 (c)

R2 = R1 + 3 (d)

True Dependence

Output Dependence

Anti Dependence
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Actors

 Functional programming allows for the possibility of
concurrent evaluation of expressions in a program

 (sum ( 4 5 ))
 9
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Actors

 Functional programming allows for the possibility of
concurrent evaluation of expressions in a program

(sum ( (mult (
(sum (4 5)) (sum (4 5))

)
(sum (4 5))

)
)
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Actors

 Functional programming is unable to address the
problem of history-sensitive behaviors (functions don‘t
keep state)
 Actors avoid assignment operations but allow the

modeling of history-sensitive behaviors
 Gul Agha proposed the concept of replacement, which states that an

actor must specify/create the actor which will handle the next
message/communication
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source: Gul Agha 1986
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Actors

 According to Lee (Berkeley, 2004)
 In actor-oriented design, components are concurrent objects that

communicate via messaging, as opposed to abstract data structures
that interact via procedure calls

 Actors are conceptually concurrent, but unlike Agha’s actors, they
need not have their own thread of control

 Although communication is still through some form of message
passing, it need not be strictly asynchronous
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Actor-orientation

 Actors execute and communicate with other actors in a
model
 A have a well defined component interface, which

abstracts the internal state and behavior of an actor, and
restricts how an actor interacts with its environment
 The interface includes ports that represent points of

communication for an actor, and parameters that are used
to configure the operation of an actor
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Actor-orientation

ACTOR

ACTOR

PORT

PORT

CHANNEL

DATA

PORT

PARAMETERS

Package
Data

Unpackage
Data

Process
Data

ACTION METHODS

TOKEN

source: Lee 2004
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Actor-orientation

 Actors communicate through channels that pass data from
one port to another according to some messaging scheme
 In object-oriented design, components interact primarily

by transferring control through method calls, while in
actor-oriented design they interact by sending messages
through channels
 Actors interact only with the channels that they are

connected to and not directly with other actors
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source: Lee 2004
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Actor-orientation

 The syntactic structure of an actor-oriented design model
says little about the semantics
 The semantics is determined by a model of computation

(MoC), which define the operational rules for executing a
model
 Such rules determine when actors perform internal

computation, update their internal state, and perform
external communication
 The model of computation also defines the nature of

communication between components
 According to Lee, the MoC is expressed as a Director in an

actor-oriented model
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Actor-orientation

source: Lee 2005
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Actor-orientation

 MoCs formalize a platform
of well defined execution
semantics that can help
mapping applications onto
implementation-related
platforms
 Heterogeneous models

can be created through
the hierarchical
composition of different
MoCs

Source: E. A. Lee
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Concurrent Models of Computation
 Rules that define how actors behave and communicate

concurrently in a given model
 According to the rule definitions, models can have specific

properties, such as being statically schedulable or time safe
 Examples: Discrete Events, Communicating Sequential

Processes, Continuous Time, Process Networks,
Synchronous Dataflow, Giotto, etc.
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Concurrent Models of Computation
 Models can have different representations of time

 absolute time

• T is a totally ordered closed

connected set

• T = 

 discrete time

• T is a totally ordered

discrete set

 untimed

• precedences

• T is a partially ordered

discrete set

t

temp (K)

temp (K)

t

T

T
read

temp A

read
temp B

avg
A, B

avg
A, B

read
temp A

read
temp A

read
temp B



90

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Concurrent Models of Computation
 Models can have different representations of time

 absolute time

• continuous time (CT)

 discrete time

• discrete events (DE)

 untimed

• dataflow models

- Kahn process networks (KPN)

- synchronous dataflow (SDF)
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Discrete Event (DE)

 In the DE MoC, actors communicate by sending events,
which comprehends a token and a tag
 token is a data value

 tag includes a timestamp and a microstep (used to order events with
the same timestamp)

 Events are processed chronologically according to their
timestamps
 Actors whose available input events are the oldest

(having the earliest time stamp of all pending events) are
activated
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Discrete Event (DE)

 Model time is global: all actors share the same
timestamp and microstep

 When actors send a token through an output port, this
token is encapsulated as an event and stored in a global
event queue

 Unlike specified otherwise by the actor, the event is
tagged with the current model time and microstep (actor
processes tokens without delay)
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Discrete Event (DE)

 Actors can be activated at arbitrary times by sending
pure events to themselves with a future timestamp (no
need for ports)

 In the global event queue, events are sorted based on
their tags, including time stamps and microsteps

 An event is removed from the global event queue when
the model time reaches its time stamp, and if it has a
data token, then that token is put into the destination
input port
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Discrete Event (DE)

source: Lee 2004
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Discrete Event (DE)

 Simultaneous events
 the execution of events with the same timestamp must be ordered (in

a deterministic way)

 achieve a dataflow behavior for events with the same timestamp

source: Lee 2005
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Discrete Event (DE)

 Typical uses:
 digital systems

 queue systems

 networks

 transportation systems

 commerce

 Similar to:
 VHDL, Verilog, SES Workbench
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Continuous Time (CT)

 Actors represent components that interact via
continuous time signals

 They typically specify algebraic or differential relations
between inputs and outputs, and can be modeled by
ordinary differential equations (ODEs)

 Such models are „solved“ rather than simulated
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Continuous Time (CT)

)(

)(

CxzB
dt

dz

Ayx
dt

dy

zy
dt

dx
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Continuous Time (CT)

 Solution is a continuous function of time (waveform)

 The precise solution of a set of ODEs is usually
impossible to be found using digital computers

 Numerical solutions are approximations of the precise
solution
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Continuous Time (CT)

 Numerical solution approximate the state trajectory of a
differential equation by estimating its value at discrete
points
 The choice of the points depends on the function
 Using numerical solvers, the solution is a discrete-event

signal

source: Lee 2004
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Continuous Time (CT)

 Typical uses:
 analog circuits

 plant dynamics in control systems

 mechanical systems

 heat flows

 Communication channels

 Similar to:
 Spice, Agilent ADS, Simulink
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Dataflow Model of Computation

 Dataflow models represent a given system
 as a directed graph

 where each node performs computation (actors)

 and edges represent channels through which nodes can exchange data
(tokens)

A1

A3

A0 A2 A4

In Von Neumann imperative style, program counter rules the
execution

Dataflow models don‘t define the sequence on which actors are
executed (fired)

Actors can fire when inputs are available (actors without inputs can
fire anytime)

Exposes potential concurrency: data movement rules the execution
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Dataflow Model of Computation

 Actors execute concurrently and communicate by exchanging tokens
through FIFO-buffered channels

 computation performed by a given actor can be described by imperative
language

 Buffers usually treated as unbounded for flexibility

 buffer sizes on final implementation are a design decision

 Read operations are destructive: once read, the token is removed from
the buffer

A1

A3

A0 A2 A4
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Dataflow Model of Computation

 Applications of dataflow models

 signal processing systems

 systems dealing with continuous streams of data

 Easier to extract parallelism
 Buffered channels are used in such systems anyway

+

x

x

D

D
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Kahn Process Networks (KPN)

 Proposed by Gilles Kahn in 1974
 Processes (actors) communicate asynchronously

through unbounded buffers
 non-blocking write

 blocking read

 A process that reads from an empty channel will stall
and can only continue when the channel contains
sufficient tokens
 Processes are not allowed to test an input channel for

existence of tokens without consuming them
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Kahn Process Networks (KPN)
 At any given point, a process is

either doing some computation
(active) or it is blocked waiting for
data (read blocked) on exactly one
of its input channels
 it cannot wait for data from more than one

channel simultaneously
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Kahn Process Networks (KPN)

 Important property: DETERMINISM

the sequence of values communicated through the
channels is completely determined by the model

a KPN can be executed using a completely parallel
schedule, a completely sequential schedule, or any
schedule in between, always yielding the same
output results for a given input sequence

which process to activate at a certain moment has
to be decided during execution time, based on the
current situation
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Kahn Process Networks (KPN)

 Example

process f (InFIFO<int> u, OutFIFO<int> v, OutFIFO<int> w)
{

int k;
while (true){

k = u.wait();
if (k % 2 = 0) v.send (k);
else w.send(k);

}

wait() returns the next
token in an input FIFO,
blocking if it’s empty

send() writes a data
value on an output FIFO

w
f

v
u
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Kahn Process Networks (KPN)

 Example

process g (InFIFO<int> u, OutFIFO<int> v)
{

int k;
while (true){

k = u.wait();
v.send (k);

}

g vu
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Kahn Process Networks (KPN)

 Example

process h (InFIFO<int> t, InFIFO<int> u, OutFIFO<int> v)
{

int k; boolean s=true;
while (true){

if (s) then k = t.wait();
else k = u.wait();
v.send (k);
s=!s;}

}

h v

u

t
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Kahn Process Networks (KPN)

 Example

h

g

g

f6 2 7 1 4
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Kahn Process Networks (KPN)

 Example

h

g

g

f6 2 7 1
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Kahn Process Networks (KPN)

 Example

h

g

g

f6 2 7 1

4
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Kahn Process Networks (KPN)

 Example

h

g

g

f6 2 7

4
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Kahn Process Networks (KPN)

 Example

h

g

g

f6 2 7

4

1
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Kahn Process Networks (KPN)

 Example

h

g

g

f6 2

4

1
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Kahn Process Networks (KPN)

 Example

h

g

g

f6 2

4

7 1
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Kahn Process Networks (KPN)

 Example

h

g

g

f6

4

7 1
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Kahn Process Networks (KPN)

 Example

h

g

g

f6

2 4

7 1
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Kahn Process Networks (KPN)

 Example

h

g

g

f

2 4

7 1



121

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2 4

7 1
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1

4
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1

4
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1

4
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1

4
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

7 1

4
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6

7 1

2

4
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6

7

2

4
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6

7

2

4

1
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6

7

2

4
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6

7

2

1 4



134

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

1 4
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

1 4

7
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Kahn Process Networks (KPN)

 Example

h

g

g

f

2

1 4
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6 2

1 4

7
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6

1 4
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6

2 1 4
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6

2 1 4
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Kahn Process Networks (KPN)

 Example

h

g

g

f

6

7 2 1 4
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Kahn Process Networks (KPN)

 Example

h

g

g

f 7 2 1 4
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Kahn Process Networks (KPN)

 Example

h

g

g

f 6 7 2 1 4
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Kahn Process Networks (KPN)

 Example

 Schedule

 f f f f f gu h h gu gd gd gu h h h

h

g

g

f 6 7 2 1 4
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Kahn Process Networks (KPN)

 A given process is only affected by the sequence of
tokens on its inputs
 it can’t tell whether they arrive early, late, or in what order

 it will behave the same in any case

 the sequence of tokens it puts on its outputs is the same regardless of
the timing of the tokens on the inputs
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Kahn Process Networks (KPN)

 Schedule must be determined at runtime
 it doesn‘t affect functional behavior

 challenge is to avoid accumulation of tokens

 not all systems can be scheduled without token accumulation

 whether a KPN can execute in bounded memory is undecidable

 a number of algorithms can find a schedule to execute a KPN in
bounded memory (if such schedule exists)

• usually require run-time deadlock detection

h

g

g

f...1 1 2 1 1 2 1 1 2
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Synchronous Dataflow (SDF)

 Proposed by Lee and Messerschmitt in 1987
 Restricted type of KPN useful for modeling simple

dataflow systems
 Constraint: each actor in a model reads and writes a

fixed number of tokens every time it is fired
 Schedule can be statically determined

 simpler and faster implementation of the model execution engine,
bounded memory usage

 deadlocks are avoided
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Synchronous Dataflow (SDF)

 Adequate for signal processing systems
 number of consumed and produced tokens per firing is independent of

the data and known beforehand

+

x

x

D

D
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Synchronous Dataflow (SDF)
 Adequate for signal processing systems

 number of consumed and produced tokens per firing is independent of the
data and known beforehand

+

x

x

D

D

1 1

1

1

1
1 1

1

homogeneous SDF
graph

Delay D – nth token consumed by its successor is the
n-1th token produced by its predecessor
• initialized with d „zero“ tokens
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Synchronous Dataflow (SDF)

 Scheduling SDF
 must respect precedence graph

 no process fired unless all tokens it consumes are available

 valid schedules: A B C , B A C

 invalid schedule: C A B

+

x

x

1 1

1

1

1
1 1

1

A

B

C

+

x

x

A

B

CD

D
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Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 assumes infinite stream of data

 periodic schedule can be applied repetitively on input stream without
accumulating tokens in the buffers

A B

C

1 1

1 1

2 2
PASS:

A B C C
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Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 formalism to determine PASS

 1. build the topology matrix 

A B

C

1 1

1 1

2 2
e1

e2 e3

1 -1 0

2 0 -1

0 2 -1

e1

e2

e3

A B C

 =

token consumption is negative
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Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 formalism to determine PASS

 2. determine the relative firing frequency of each node by finding the
smallest positive integer vector q such as  q = 0

qA

qB

qC

= 0

1

1

2

q =

1 -1 0

2 0 -1

0 2 -1
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Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 formalism to determine PASS

 3. if rates can be established, any scheduling algorithm that avoids
buffer underflow will produce a correct schedule if it exists

PASS: A B C C

A B

C

1 1

1 1

2 2

e1

e2 e3

- for each node, schedule if
runnable, trying each node
once

- if each node has been
scheduled qi times, stop

1

1

2

q =
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Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 not always possible to find a PASS

A C

B

1 1

2 3

1 1
1 0 -1

1 -2 0

0 3 -1
 =

0

0

0
q =

tokens will accumulate here

rate inconsistency
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Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 how to test?

 rank(  ) = s – 1 (s stands for the number of actors on the graph)

• necessary condition for the existence of a PASS

A C

B

1 1

2 3

1 1
1 0 -1

1 -2 0

0 3 -1
 = =

1 0 -1

0 -2 1

0 0 1/2

using Gaussian
elimination

row echelon
form
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Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 how to test?

 rank(  ) = s – 1 (s stands for the number of actors on the graph)

• necessary condition for the existence of a PASS

1 0 -1

1 -2 0

0 3 -1
 = =

1 0 -1

0 -2 1

0 0 1/2

rank(  ) = 3s = 3

A C

B

1 1

2 3

1 1
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Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 how to test?

 rank(  ) = s – 1 (s stands for the number of actors on the graph)

• necessary condition for the existence of a PASS

1 -1 0

2 0 -1

0 2 -1
 = =

1 -1 0

0 2 -1

0 0 0

rank(  ) = 2s = 3

A B

C

1 1

1 1

2 2
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Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 slightly more complex example

B

D

1

2
3

2

C

A

3

41

3

2

1

6

-2 0 0 1

-1 0 2 0

0 1 -3 0

0 4 0 -3

3 -2 0 0

 =
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Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 slightly more complex example

B

D

1

2
3

2

C

A

3

41

3

2

1

6

2

3

1

4

q =

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

… many more

BC … is not valid
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Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 slightly more complex example

B

D

1

2
3

2

C

A

3

41

3

2

1

6

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

… many more

Which one should I

choose?
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Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 how to choose a schedule?

B

D

1

2
3

2

C

A

3

41

3

2

1

6

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

… many more

single appearance

schedule

may require
larger
buffers
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Synchronous Dataflow (SDF)

 Periodic Admissable Sequential Schedule (PASS)
 how to choose a schedule?

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

… many more

single appearance

schedule

Reconfigurable
HardwareBCDA

useful for a reconfigurable
hardware implementation
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Synchronous Dataflow

 Typical uses:
 signal processing
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Synchronous Dataflow

Another example:

SDF scheduling in two
steps
• Establish relative

execution rates by
solving a system of linear
equations

• Determine periodic
schedule by simulating
system for a single round

source: Neuendorffer 2004



166

Application-specific Multiprocessor Platforms based on NoCs | L. S. Indrusiak

source: Neuendorffer 2004

Synchronous Dataflow
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Synchronous Dataflow

 Exercise:
 Consider the actor oriented model below following a synchronous

dataflow model of computation. Calculate the balance equations and
find a valid schedule for it in such a way that no actor requires buffers
larger than 3 on its input ports.

A

B

C

D

E

2 1

2

1 1

2 1

2

1
3

3
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Synchronous Dataflow

 Exercise:
 2A – E = 0

 A – C = 0

 2B – 2C = 0

 2B – D = 0

 2C – D = 0

 3D – 3 E = 0

 A = B = C = 1

 D = E = 2

 Valid schedules:
 A B C D D E E (requires 6 position buffer at D-E channel)

 A B C D E D E (all buffers have 3 positions or less)

A

B

C

D

E

2 1

2

1 1

2 1

2

1
3

3
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Course Outline
 On-Chip Multiprocessing

 motivation, review

 Application-specific Multiprocessor Platforms
 validation, concurrency issues, application-platform mapping

 Platform models
 evaluation, accuracy

 Application models
 concurrency

 Joint execution of application and platform models
 case study

 Background theory and tool support
 actor orientation, Ptolemy II, custom made extensions

 demo
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Application Modelling
 Extending actor-orientation with types and explicit ordering

 UML suitable visual representation for the definition of polymorphic type
systems (class diagrams) and ordering relations (sequence diagram)

 but UML is not an executable specification language

?
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UML sequence diagrams within actors

 Recall the formal definition of MSC

 tuple P, E, C, l, m, <  where

 P is a finite set of processes

 E is a finite set of events

 C is a finite set of names for messages

 l: E →T = { p!q(a), p?q(a), p(a) | p≠q  P, a  C }

 m: S →R

 <  E  E is a acyclic relation between events consisting of:

• a total order on EP for every p  P, and

• s < r, whenever m(s)=r
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UML sequence diagrams within actors

 Recall the formal definition of MSC
 order of events (message occurrence) within a process (lifeline) is a

total order

 the reflexive-transitive closure of < (denoted as <*) is a partial order
on the complete set E

 enough for the definition of an untimed model of computation

 different possibilities were explored and integrated as a library of
directors on an extended version of Ptolemy II
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Application modelling
 Application modeling based on behavioral patterns and

polymorphic type systems

constraints to concurrent
execution described using
UML

application functionality
described using actors
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Platform modelling
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