Computer Engineering Group	b-tu Brandwar Untroduction HW Self-Repair SW Self-Repair
Self-Repairing Statically Scheduled Superscalar Processors	Rebinding • Introduction Hybrid Off-Line • Hardware-Based Self-Repair Lower Granularity • Software-Based Self-Repair Summary - Rebinding
Mario Schölzel Computer Engineering Group at Brandenburg University of Technology Cottbus, Germany	 Rescheduling Hybrid Off-Line Self-Repair Lowering the Self-Repair Granularity Hybrid On-Line Self-Repair
1	CREDES Workshop Tailinn, September, 2010 2

Brandenburg University of Technology Cottbus	Computer Engineering Group
∙Introduction HW Self-Repair SW Self-Repair	Nano-Structure Problems
Rebinding Rescheduling Hybrid Off-Line	 Transistors in integrated circuits become smaller and smaller. Smaller Transistors are more susceptible to process variations,
Lower Granularity Hybrid On-Line Summary	 more susceptible to voltage drops, have higher stress in the field due to higher current density. Consequence:
	 Some transistors will be "out of specification": after manufacturing, very soon after manufacturing (early-life-failures), after some years of heavy usage (wear-out).
	 Faults occur due to unreliable hardware, i.e. wrong outputs inside the system are produced. Goal:
Mario Schölzel CREDES Workshop Tallinn, September, 2010	 Wrong outputs inside the system should not appear outside: What kind of faults? How can they be handled? When and where?
7	

Brandenburg University of Technology Cottbus	Compute	er Ei	ngineering Gr	oup		Ć	B			
Introduction HW Self-Repair SW Self-Repair			Proces	sor Arc	chitectu	re				
Rebinding Rescheduling		Program Memory								
Hybrid Off-Line Lower Granularity	FE		FE-Reg 1	FE-Reg 2	FE-Reg 3	FE-Reg 4				
Hybrid On-Line Summary	DE	0								
Mario Schölzel CREDES Workshop	EX	Register File	DE-Reg 1	DE-Reg 2	DE-Reg 3	DE-Reg 4				
Tallinn, September, 2010			WB-Reg 1	WB-Reg 2	WB-Reg 3	WB-Reg 4				
13	WB		Slot 1	Slot 2	Slot 3	Slot 4				

Brandenburg University of Technology Cottbus	Computer Engineering Group
Introduction HW Self-Repair SW Self-Repair	Summary – Hardware-Based Self-Repair
Rebinding Rescheduling Hybrid Off-Line	 Used in many approaches concerning VLIW architectures (late rebinding).
Lower Granularity Hybrid On-Line Summary	Advantages: Advantages: Not visible for the software. Londling of multiple Fourth.
	 Handling of multiple Faults. On-Line Handling of permanent faults, if permanent faults can be detected and localized on-line.
	 Disadvantages: Contradicts the VLIW concept.
Mario Schölzel	 Strong graceful performance degradation.
CREDES Workshop	 Administrative hardware overhead.
Tallinn, September, 2010	 Rebinding of operations, each time the operation is executed.

Brandenburg University of Technology Cottbus	Computer Engineering Group
Introduction HW Self-Repair ∍SW Self-Repair	Software-Based Self-Repair Approaches
Rebinding Rescheduling	Rebinding:
Hybrid Off-Line Lower Granularity	 Operations are rebound within the same instruction.
Summary	 Dependencies are not violated.
	 Restricted to single-cycle operations.
	Rescheduling:
	 Operations are rescheduled within a whole basic block.
Mario Schölzel	 Dependencies must be taken into account.
CREDES Workshop Tallinn, September, 2010	- Multi-cycle Operations can be handled.
25	

Brandenburg University of Technology Cottbus	Computer Engineering Group
Introduction HW Self-Repair SW Self-Repair	How to Find a Permutation
Rebinding Rescheduling Hybrid Off-Line Lower Granularity Hybrid On-Line Summary	 Model the problem as a directed graph (<i>N</i>,<i>E</i>): Nodes represent FUs. There is an edge (<i>u</i>,<i>v</i>) (with label <i>op</i>), iff <i>u</i> executes an operation of type <i>op</i> and <i>v</i> can execute an operation of type <i>op</i> and the operator of type <i>op</i> is not faulty in <i>v</i>. G is the set of FUs that consists of the faulty FU and all FU that execute a NOP in the current instruction. Goal: Find in the graph any path from the faulty FU <i>a</i> to a FU in set G.
fario Schölzel	 I.e.: Compute the transitive closure E⁺ and check whether for any b ∈ G: (a,b) ∈ E⁺ or not.
REDES Workshop	Shift all operations along the path by one edge.
28	

b-tu Brandenburg University of Technology Cottbus	Computer E	ngineering	Group			(i)
Introduction HW Self-Repair SW Self-Repair • Rebinding Rescheduling Hybrid Off-Line Lower Granularity Hybrid On-Line	Prob	Function	Comp al Units in	uting a the Data P	ath	utation
Summary	+	-	-	+	*]
		Ex	ecuted inst	ructions		
	-	*	-	+	+	Permutation exists.
Mario Schölzel						
CREDES Workshop		Instru	ction 2 to	be execute	d	No
31	-	-	-	+	*	permutation exists.

Brandenburg University of Technology Cottbus	Computer	Enginee	ering Grou	lp		
Introduction HW Self-Repair SW Self-Repair Rebinding	Runtime of th	ne SW-base	Re d Self-Repair ro	pair	Ti	me vcies
Rescheduling		SW-R	ebinding		Score	boarding
Hybrid Off-Line	Benchmark	1-operator fault	1-execution unit	1-operator fault	r	1-execution unit
Lower Granularity	ARF	2103	1950	9246		15592
Hybrid On-Line	DIF	3246	2730	9607		26872
Summarv	FFT	3190	2535	11145		23464
	EWF	2956	3120	45582		47862
	DIT	3650	3510	19643		36616
	LEE	4240	3315	15929		37651
	Estimated sta for three diffe	atic runtime arent applica static overhead SW-rebindir	overhead in se ation scenarios d for static ove scoreb	econds s whead for oarding	As:	sumptions: 10% of the code is time critical. Ayerage size of a time critical basic block is
Mario Schölzel	16000	0,07s	0,6	96s		14 instructions.
ODEDEO Washakaa	64000	0,31s	2,6	94s	•	block is 7 instructions.
Tallinn, September, 2010	256000	1,235	10,	b/s	•	SW-rebinding on average: 240 clock cycles per instruction. Rescheduling on average: 35200 clock cycles for time-critical and 14100 clock cycles for non-time critical basic blocks.
40					•	Clock rate of about 50 MHz.

Brandenburg University of Technology Cottbus	Compu	iter E	ngin	eerin	g Gro	up						Comme	
Introduction HW Self-Repair SW Self-Repair Rebinding Rescheduling Hybrid Off-Line	Worst-c	F ase e	Rur	ntin	ne	of 1	the	Ap	opera	Ca	tior	ך I-fault	
Lower Granularity	class	1.	operator fa	ult	1-exe	cution unit	fault	24	operator fau	it.	2-exi	cution unit	fault
Hybrid On-Line	Method	HR	Sc	SR	HR	Sc	SR	HR	Sc	SR	HR	Sc	SR
-	ARF	63%	25%	25%	100%	25%	25%	125%	25%	38%	200%	75%	88%
Summary	DIF	82%	27%	37%	100%	37%	64%	136%	64%	91%	200%	118%	91%
	FFT	70%	20%	10%	100%	40%	30%	130%	90%	50%	200%	130%	80%
	EWF	93%	7%	0%	93%	43%	14%	150%	36%	21%	171%	36%	36%
	DIT	57%	7%	7%	100%	21%	29%	107%	36%	50%	200%	71%	79%
	LEE	79%	43%	0%	100%	43%	21%	157%	43%	29%	200%	86%	79%
	Average:	74%	22%	13%	99%	35%	31%	134%	49%	47%	195%	86%	76%
Mario Schölzel CREDES Workshop Tallinn, September, 2010													
41													

Brandenburg University of Technology Cottbus	Com	puter En	gineering	Group		
Introduction HW Self-Repair SW Self-Repair Rebinding Rescheduling Hybrid Off-Line	• Si - • Pa	Su implified - One se artial rep	Start-Up: elf-repair rom	r y — Hyb utine is sufficier es repair-time:	orid Met	hods
Hybrid On-Line Summary		Instructions in application 16000 64000 256000	static overhead for SW- rebinding 0,07s 0,31s 1,23s	static overhead for Scoreboarding 0,66s 2,64s 10,57s	static overhead for HSW 0,007s 0,03s 0,12s	static overhead for HSC 0.08s 0.32s 1.29s
Mario Schölzel CREDES Workshop Tallinn, September, 2010 49	• E) - - • Hy tin	xtended - Handlin based - Certair degrad degrad ybrid me me and p	Reliability ng of fault s methods, is n amount of lation by so lation. ethods pro performan	: ituations, which s possible. faults can be h ftware-based m vide a good c ce degradatio	andled without andled without hethods; after th ompromise be n.	ndled by pure SW- graceful hat graceful etween repair-

Brandenburg University of Technology Cottbus	Compu	uter Engineering	g Group			
Introduction HW Self-Repair SW Self-Repair Rebinding Rescheduling	S	Summary	∕ – Off-	Line	Self-F	Repair
Lower Granularity	Method	Dynamic runtime overhead	Static runtime overhead	Reliability	HW- overhead	Allowed operation latency
Summany	HR	high	none	high	low	1
ounnary	SR	low	medium	scalable	none	1
	SC	low	high	scalable	none	arbitrary
	HSR	low to medium	low	high	low	1
	HSC	low to medium	medium	high	low	1
Mario Schölzel CREDES Workshop Tallinn, September, 2010		Move as mu p	Mes uch of the possible in	sage: adminis to softw	trative v are!	work as

Brandenburg University of Technology Cottbus	Computer Engineering Group
Introduction HW Self-Repair SW Self-Repair Rebinding	Modeling Faults for Slot- and Operator- Level
Rescheduling Hybrid Off-Line Lower Granularity	 Fault state of EU k is described by F_k(i). Thereby:
Hybrid On-Line Summary	 - F_k(i) = 0, iff operator <i>i</i> can be used, - F_k(i) = 1, iff operator <i>i</i> can not be used. If for all <i>i</i> holds F_k(i) = 0, then the whole slot <i>k</i> can not be used anymore.
Mario Schülzel CREDES Workshop Tallinn, September, 2010	• CanBeScheduled(<i>slot</i> , <i>op</i>) := F _{slot} (<i>op</i>).
54	

Brandenburg University of Technology Cottbus	Computer Engineering Group			
Introduction HW Self-Repair	Size of the Cor	npone	ents	
Rebinding Rescheduling	Program Memory Instruktion 1 Coveration for abit 4 Coveration for abit 4 Instruktion 2 Coveration for abit 4 Coveration for abit 4 Instruktion 2 Coveration for abit 4 Coveration for abit 4	Component	Transistors	Instances
Hybrid Off-Line	FE Fetch/Register 000: 5xm15xm204Fetch/Register 000: 5xm15xm204Fetch/Register	Ctrl	800	1
Hybrid On-Line Summary		FE-Reg	580	4
	DE	DE-Reg	1300	4
		Bypass	1400	8
		EU	7000	4
	Nthe-fact-frighter Nthe-fact-frighter Image: Control of the factor of t	WB-Reg	500	4
Mario Schölzel	Slot1 Slot4	RP	6900	8
CREDES Workshop Tallinn, September, 2010	Data Memory	REG	890	64
55				

Brandenburg University of Technology Cottbus	Computer Engineering Group
Introduction HW Solf-Repair SW Self-Repair Rebinding Rescheduling Hybrid Off-Line +Lower Granularity Hybrid On-Line Summary	Adapting the Self-Repair Algorithm • Intropasstate[2*k] • Intropasstate[2*k] • Intropasstate[2*k] • Dypasstate[1 & 1 = True, Iff forwarding from the VE-stage into the DE-stage can be used. • bypasstate[1] & 1 = True, Iff forwarding from the VE-stage into the DE-stage can be used. • bypasstate[2] & 2 = True, Iff forwarding from the VE-stage into the DE-stage can be used. • bypasstate[2] & 2 = True, Iff forwarding from the VE-stage into the DE-stage can be used. • bypasstate[2] & 2 = True, Iff forwarding from the VE-stage into the DE-stage can be used. • currInstr - lastDef[] = 1 & 64 (bypassState[2*slot] & 2) ([]
Mario Schölzel CREDES Workshop Tallinn, September, 2010 62	

Brandenburg University of Technology Cottbus	Computer Engin	neering	Group		Ø
Introduction HW Self-Repair SW Self-Repair		Re	sults -	Runtin	ne
Rescheduling • Four injected Faults: Nord Off-Line - Adder in slot 2, Lower Granularity - Left bypass in slot 1 (Forwarding from EX-stage de read port in slot 4 und 5 to 6 can not be accessed vir read port in slot 4.				EX-stage defect), accessed via the left	
	Level of the Repair				
	Benchmark	Slots	Slots & Operators	Slots & Operators & Bypasses	Slots & Operators & Bypasses & Read ports
	ARF (8)	350%	200%	125%	113%
Mario Schölzel	FFT (10)	380%	270%	160%	120%
CREDES Workshop	EWF (14)	243%	193%	129%	107%
Tallinn, September, 2010 66					

らってい	
Brandenburg University of Technology Cottbus	Computer Engineering Group
Introduction	
HW Self-Repair	Results – Fault Injection
SW Self-Repair	-
Rebinding Rescheduling	 Fault Injection in 1.000.000 VLIWs.
Hybrid Off-Line	 10 injected faults in each VLIW system
Lower Granularity	
Hybrid On-Line	 Surviving VLIWs if self-repair takes place at
Summary	slot level: 0,3%.
	Surviving VI IWs if self-repair takes place at
	olational register levels 54%
	slot- and register level: 51%.
	 Surviving systems if self-repair takes place at
	all levels of granularity: 82%
Mario Schölzel	an levels of granularity. 0270.
CREDES Workshop	
Tallinn, September, 2010	
67	

b-tu Brandenburg University of Technology Cottbus	Computer Engineering Group
Introduction HW Self-Repair SW Self-Repair	Summary – Lowering the Granularity
Rebinding Rescheduling Hybrid Off-Line	 Fine-grained self-repair method for statically scheduled data paths.
Lower Granularity Hybrid On-Line Summary	 Refining the granularity does not require additional hardware (already existing switches in the system are employed).
	• Multiple Faults did not reduce dramatically the run time of the application.
/lario Schölzel CREDES Workshop	 Number of surviving systems is increased very much compared to coarse-grained approaches.
allinn, September, 2010	Demands for the granularity for a diagnostic

CRE

Brandenburg University of Technology Cottbus	Computer Engineering Group	a dura
Introduction HW Self-Repair SW Self-Repair Rebinding Rescheduling	<u>De E</u> <u>Op F</u> <u>Op G</u> <u>Op H</u>	
Hybrid Off-Line Lower Granularity ∙Hybrid On-Line Summary	PE Op A Op B Op C Op D Rebinding Logic DE DE-Reg 1 DE-Reg 2 DE-Reg 3 DE-Reg 4	
Mario Scholzel CREDES Workshop Tallinn, September, 2010	in recovery mode: FE Op A Op B NOP NOP Rebinding Logic DE DE-Reg 1 DE-Reg 2 DE-Reg 3 DE-Reg 4 EX	

