
1

Computer Engineering Group

Self-Repairing Statically Scheduled 
Superscalar Processors

1

Mario Schölzel
Computer Engineering Group 

at
Brandenburg University of Technology

Cottbus, Germany

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Outline

• Introduction

• Hardware-Based Self-Repair

• Software-Based Self-Repair
R bi di

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

2

– Rebinding

– Rescheduling

• Hybrid Off-Line Self-Repair

• Lowering the Self-Repair Granularity

• Hybrid On-Line Self-Repair

Computer Engineering Group

Introduction

3

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Moore’s Law

• Gordon Moore is co-founder of Intel (1968)
• Moore is widely known for "Moore's Law," in which in 

1965 he predicted that the number of components 
the industry would be able to place on a computer 
chip would double every year

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

4

chip would double every year. 
• In 1975, he updated his prediction to once every two 

years. It has become the guiding principle for the 
semiconductor industry to deliver ever-more-
powerful chips.

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Evolution of Transistor Count

108

109

1010

Dual Core Itanium 2 (1.700.000.000)

Itanium 2 (220.000.000)

s

104

e
r

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

5
1971

103 4004 (2300)

1980 1990 2000

8080 (4500)

8088 (29.000)

80286 (134.000)

80386 (275.000)

80486 (1.200.000)

104

105

106

107

108

Pentium (3.100.000)
Pentium II (7.500.000)

AMD K7 (22.000.000)

Pentium 4 (42.000.000)

Year

N
u

m
b

e
r 

o
f 

tr
a

n
s

is
to

rs

101

102

103

G
a

te
 s

iz
e

 in
 n

a
n

o
 m

e
te

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Nano-Technology in Computers

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

6

Gate Length

We talk about Nano-
Technology if the gate length is 
less than 100 Nano Meters.

1 Nano Meter = 0,000001 mm 
is approximately the size of 4 
neighbored metal atoms.



2

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Nano-Structure Problems
• Transistors in integrated circuits become smaller and smaller.
• Smaller Transistors are 

– more susceptible to process variations,
– more susceptible to voltage drops,
– have higher stress in the field due to higher current density.

• Consequence:

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

7

Consequence: 
– Some transistors will be „out of specification“:

• after manufacturing,
• very soon after manufacturing (early-life-failures),
• after some years of heavy usage (wear-out).

– Faults occur due to unreliable hardware, i.e. wrong outputs inside 
the system are produced.

• Goal:
– Wrong outputs inside the system should not appear outside:

• What kind of faults?
• How can they be handled?
• When and where?

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Types of Faults (what)

Temporary Faults:
Appear only for a very short time period and disappears without any 
external intervention.

Transient Faults:

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

8

Permanent Faults:
Do not disappear without a repair (deterministic reproducible).

Triggered by an external event.

Intermittent Faults:
Triggered by a certain state of the system.

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Fault Handling Techniques (how)
• Used Method may depend on the circuit type:

– regular logic (e.g. memory),
– irregular logic, 
– bus,
– reconfigurable logic,
– programmable processors.

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

9

p g p
• Handling of Temporary Faults by redundancy in:

– Time,
– Resources,
– Data.

• Handling of Permanent Faults by
– Hiding the fault by redundancy in resources or data,
– Avoiding the usage of defect components (localization needed):

• Reconfiguration of the hardware (suitable for any circuit type):
– Statically,
– Dynamically.

• Adaptation of the software (only suitable for processors):
– By hardware methods (=dynamically),
– By software-based methods.

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Scenarios for the Handling of Faults 
(when and where)

On-ChipOff-Chip

ne

Transient faults: Handling by redundancy in time, resources, or 
data (Fault Tolerant Computing, well established)

Handling of 

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

10

O
n-

Li
n

O
ff-

Li
ne

Handling of transient and permanent faults by 
methods of fault tolerant computing.

Handling of 
transient faults 
by fault tolerant 

computing.

Handling of 
permanent 

faults by self-
repair. 

Handle permanent faults by methods of self-
repair.

g
permanent 
faults by 

methods of 
invasive 

configuration.

Off-Chip 
localization and 

repair by external 
equipment.

On-Chip localization and on-chip reconfiguration/repair.

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Dynamic vs. Static Scheduled 
Processors

• More performance is obtained by 
parallelism.

• Parallelism can be discovered at 
instruction level:
– Dynamically:

• Binary Compatibility
Ctrl/DP: 40/60

AMD K7 (32 Bit)

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

11

• Binary Compatibility
• Performance
• Compiler Support

– Statically:
• Easy adaptable to a specific 

application.
• Good ratio between 

performance/power/area 
consumption.

• Real-time behavior is well predictable.
• Compiler knows which resources are 

used by which operations.
Source: http://www.chip-architect.org/news/AMD_family_pic.jpg

Ctrl/DP: 1/99

Computer Engineering Group

Hardware-Based Self-Repair

12



3

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Processor Architecture

FE

DE

Program Memory

FE-Reg 1 FE-Reg 2 FE-Reg 3 FE-Reg 4

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

13

DE

EX

WB
Slot 1

EU 1

DE-Reg 1

WB-Reg 1

Slot 2

EU 2

DE-Reg 2

WB-Reg 2

Slot 3

EU 3

DE-Reg 3

WB-Reg 3

Slot 4

EU 4

DE-Reg 4

WB-Reg 4

R
eg

is
te

r 
F

ile

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Program Execution

FE

DE

Program Memory

FE-Reg 1 FE-Reg 2 FE-Reg 3 FE-Reg 4

Op A Op B Op C Op D

Op A Op B Op C Op D

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

14

DE

EX

WB
Slot 1

EU 1

DE-Reg 1

WB-Reg 1

Slot 2

EU 2

DE-Reg 2

WB-Reg 2

Slot 3

EU 3

DE-Reg 3

WB-Reg 3

Slot 4

EU 4

DE-Reg 4

WB-Reg 4

R
eg

is
te

r 
F

ile opL opR opL opR opL opR opL opR

Result Result Result Result

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Program Execution (faultless)

FE

DE

Program Memory

FE-Reg 1 FE-Reg 2 FE-Reg 3 FE-Reg 4

Op A Op B Op C Op D

Op A Op B Op C Op D

Rebinding Logic

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

15

DE

EX

WB
Slot 1

EU 1

DE-Reg 1

WB-Reg 1

Slot 2

EU 2

DE-Reg 2

WB-Reg 2

Slot 3

EU 3

DE-Reg 3

WB-Reg 3

Slot 4

EU 4

DE-Reg 4

WB-Reg 4

R
eg

is
te

r 
F

ile opL opR opL opR opL opR opL opR

Result Result Result Result

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Program Execution (faulty)

FE

DE

Program Memory

FE-Reg 1 FE-Reg 2 FE-Reg 3 FE-Reg 4

Op A Op B Op C Op D

Op A Op B Op C Op D

Rebinding Logic

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

16

DE

EX

WB
Slot 1

EU 1

DE-Reg 1

WB-Reg 1

Slot 2

EU 2

DE-Reg 2

WB-Reg 2

Slot 3

EU 3

DE-Reg 3

WB-Reg 3

Slot 4

EU 4

DE-Reg 4

WB-Reg 4

R
eg

is
te

r 
F

ile opL opRopL opR opL opR opL opR

ResultResult Result Result

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Reliability

System Type Transistor 
Count

0,7

0,8

0,9

1
Rnft

RSW

RHW

VLIW with HW-Rebinding

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

17

VLIW 139500

VLIW + HW Rebinding 139500 + 7200

Slot 25400

Single EU 7000

Ctrl 800

0

0,1

0,2

0,3

0,4

0,5

0,6

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

t *Lambda *107

R
el

ia
bi

lit
y

VLIW without HW-Rebinding

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Position of the Rebinding Logic

FE

DE

EX
Rebinding

Early Rebinding Late Rebinding

g
is

te
r 

F
il

e

RP

FE

DE

EX

Rebinding

g
is

te
r 

F
il

e

RP

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

18

• Faults in the Read-Ports can 
be handled

• True-dependencies within 
the same instruction must 
be avoided:

• Faults in the Read-Ports can 
not be handled.

• Reliability is reduced.

WB
Slot

1
Slot

4

R
e

g

WB
Slot

1
Slot

4

R
e

g

add r1,r2 -> r3 add r1,r3 -> r4

add r1,r2 -> r3

add r1,r3 -> r4

Sequential execution creates True-Dependency



4

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Summary – Hardware-Based Self-Repair

• Used in many approaches concerning VLIW 
architectures (late rebinding).

• Advantages:
– Not visible for the software.

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

19

– Handling of multiple Faults.

– On-Line Handling of permanent faults, if permanent faults 
can be detected and localized on-line.

• Disadvantages:
– Contradicts the VLIW concept.

– Strong graceful performance degradation.

– Administrative hardware overhead.

– Rebinding of operations, each time the operation is 
executed.

Computer Engineering Group

Software-Based Self-Repair

20

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

nop

nop

nop

nop

Idea of the Software-Based Self-Repair

xor nop mul add

add mul shl mul

add nop shl cmp

add sub mul add

nop mul add

mul shl mul

nop shl cmp

sub mul add

jmp nop nop inc jmp nop nop inc

xor

add

add

add

Faultless Data Path Faulty Data Path

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

21

Slot 1

EU 1

Slot 2

EU 2

Slot 3

EU 3

Slot 4

EU 4

Fetch-Register

Decode-Register

Write-Back-Register

R
eg

is
te

r 
F

ile

Slot 1

EU 1

Slot 2

EU 2

Slot 3

EU 3

Slot 4

EU 4

Fetch-Register

Decode-Register

Write-Back-Register

R
eg

is
te

r 
F

ile

jmp nop nop inc jmp nop nop inc

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Basic System Architecture

Very Long
Instruction

Word
(VLIW) 

Application

Software-Based 
Self-Test and

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

22

• A permanent fault is detected and repaired during 
the startup of the system (on-chip but off-line):
– At Start-up a diagnostic self-test is done by a self-test-

routine.
– A Repair-Routine is executed in order to reorder the 

operations of the application.

• Problem: Access to the program memory.

( )
Core

Program Memory Data Memory

Self Test and 
Repair-Routine

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Infrastructure for Moving Instructions

Program 
M

Arbiter

Program 
Memory 

Bus

p
M

e
m

A
d

d
r

in
st

ru
ct

io
n

d
M

e
m

A
d

d
r

d
M

e
m

D
a

ta

d
M

e
m

C
tr

l

Data 
M

Data 
Memory 

Bus

0xffff read

instruction operation 1
0x0056 0x0010

operation 2

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

23

Ldc 0xFFFF -> R0

VLIW Core

Memory Memory

Ldc 0x0056 -> R2
Ldc 0x0010 -> R3

Load [R0]  -> R1 // Initialize Read-Mode in arbiter
Store R3   -> [R2] // Read instruction from 0x10 and 

// save it in dmem to address 0x56
Nop // Keep the VLIW-core synchronous 
Nop                    // with the program in the program memory

NOP

Arbiter makes up about 3% of the transistor count of the 
VLIW-core.

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Setting Up the System

A li ti

Jmp to Test+Repair Routine 0
Arbiter

Jmp to Test+Repair Routine 1Jmp to Test+Repair Routine 2Jmp to Test+Repair Routine 3

Program 
Memory 

Bus d
d

r

o
n

d
d

r
d

d
r

a
ta

a
ta

C
tr

l

Data 
Memory 

Bus

Test+Repair Routine i uses only slot i.

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

24

VLIW Core

Program Memory

Application

Test+Repair Routine 0

Test+Repair Routine 1

Test+Repair Routine 2

Test+Repair Routine 3

R
eset

p
M

e
m

A
d

in
st

ru
ct

i

d
M

e
m

A
d

d
M

e
m

A
d

d
M

e
m

D
a

d
M

e
m

D
a

d
M

e
m

C

Data 
Memory



5

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Software-Based Self-Repair Approaches

• Rebinding:
– Operations are rebound within the same 

instruction.

– Dependencies are not violated.

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

25

p

– Restricted to single-cycle operations.

• Rescheduling:
– Operations are rescheduled within a whole basic 

block.

– Dependencies must be taken into account.

– Multi-cycle Operations can be handled.

Computer Engineering Group

Software-Based Self-Repair

26

Rebinding

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Organization of the Self-Repair using 
Rebinding

• Save the fault state of the processor; e.g. faulty operators and 
execution units in a fault memory after the software-based self-test.

• Move each instruction of the application into the data memory.
• Compute a permutation there.
• Move the permutated instruction back into the program memory.

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

27

Program Memory

Application

VLIW 
Core

Data Memory

Repair Routine

Instruction 0

Instruction n

Op A Op B Op C Op D
Op AOp B Op C Op D

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

How to Find a Permutation
• Model the problem as a directed graph (N,E):

– Nodes represent FUs.

– There is an edge (u,v) (with label op), iff 
• u executes an operation of type op and 

• v can execute an operation of type op and

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

28

• the operator of type op is not faulty in v.

• G is the set of FUs that consists of the faulty FU and all FU 
that execute a NOP in the current instruction.

• Goal: Find in the graph any path from the faulty FU a to a FU 
in set G.

• I.e.: Compute the transitive closure E+ and check whether for 
any b ∈ G: (a,b) ∈ E+ or not.

• Shift all operations along the path by one edge.

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Computing the Permutation

- + - + * - + + *

+ + *

0 1 2 3 4

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

29

+ - - + *

0 1 2 3 4

G = {4}

41 1 0 0

Path: 4,1,0,4

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Computing the Permutation

- + - + * - + + *

0 1 2 3 4

Path: 4 1 0 4

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

30

+ - - + *

Path: 4,1,0,4

+

-

- +*

-

+

- +*

- - +* +



6

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Problem of Computing a Permutation

- + - + * - + + *

Functional Units in the Data Path

*
Instruction 1 to be executed

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

31

+ - - + *

Executed instructions

No 
permutation

exists.

Permutation 
exists.+- - +*

Instruction 2 to be executed

- - - + *

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Fault-Tolerant Scheduling

• Handle m-execution unit faults:
– schedule m NOPs in each instruction

+ * + * + * + * + * + * + * + *

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

32

• Handle n-operator faults:
– leave at least n operators of each type unused in 

each instruction

+ * + NOP
+- -NOP

* * + +
+ + + *

+ *+NOP
+- -NOP

+ * + * + * + * + * + * + * + *

* * + +
+ ++*

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Fault Tolerant Scheduling

(N,E) .. DAG of the basic block
m .. number of tolerable execution unit faults
n .. number of tolerable operator faults

i = 1 // current instruction
while not all nodes in N are scheduled do

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

33

Compute Ready-List r
for each node in r in priority order do

schedule operation r into instruction i if
-there is a free resource for r and
-at least m EUs are unused after scheduling r and
-at least n EUs that contain an operator for r
are unused after scheduling r

od
i = i +1

od

Computer Engineering Group

Software-Based Self-Repair

34

Rescheduling

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Organization of the Self-Repair using 
Rescheduling

• Save the fault state of the processor; e.g. faulty operators and 
execution units in a fault memory after the software-based self-test.

• Move the schedule of each basic block of the application into the data 
memory.

• Compute a new schedule there.
• Move the new schedule back into the program memory.

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

35

Program Memory

Application

VLIW 
Core

Data Memory

Repair Routine

Basic Block 0

Basic Block n

Basic Block kBasic Block k New Basic Block k

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Rescheduling Algorithm

nop

nop

nop

nop nop mul add

mul shl mul

nop shl cmp

mul mul add

xor

add

add

add

1. Starting with the 
Original Basic Block

2. Building a
Priority List

mul mul addadd nop shl cmpadd mul shladd …mul muladd shl

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

36

nop nop mul add

jmp nop nop inc

xor

- 1 2 3

- 4 5 6

- 7 8 9

- 10 11 12

3. Building the 
New Basic Block

mul add

add r1,r2 -> r2add r0,r5 -> r4

Defined Registers

r0

0 0 1 0 1 0 0 0
r1 r2 r3 r4 r5 r6 r7

shl r4 -> r4

mul

True-Dependency

Check if one of the used registers of the current
operation is defined by a preceding unscheduled
operation.

unscheduled unscheduled current



7

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Rescheduling Algorithm

nop

nop

nop

nop nop mul add

mul shl mul

nop shl cmp

mul mul add

xor

add

add

add

1. Starting with the 
Original Basic Block

2. Building a
Priority List

mul mul addadd nop shl cmpadd mul shladd …mul muladd shl

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

37

nop nop mul add

jmp nop nop inc

xor

- 1 2 3

- 4 5 6

- 7 8 9

- 10 11 12

3. Building the 
New Basic Block

mul add

add r1,r2 -> r2add r0,r5 -> r4

Defined Registers

r0

0 0 1 0 1 0 0 0
r1 r2 r3 r4 r5 r6 r7

shl r3 -> r4

mul

Output-Dependency

Check if one of the defined registers of the 
current operation is defined by a preceding 
unscheduled operation.

unscheduled unscheduled current

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Rescheduling Algorithm

nop

nop

nop

nop nop mul add

mul shl mul

nop shl cmp

mul mul add

xor

add

add

add

1. Starting with the 
Original Basic Block

2. Building a
Priority List

mul mul addadd nop shl cmpadd mul shladd …mul muladd shl

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

38

nop nop mul add

jmp nop nop inc

xor

- 1 2 3

- 4 5 6

- 7 8 9

- 10 11 12

3. Building the 
New Basic Block

mul add

add r1,r2 -> r2add r0,r4 -> r5

Used Registers

r0

1 1 1 0 1 0 0 0
r1 r2 r3 r4 r5 r6 r7

shl r3 -> r4

mul

Anti-Dependency

Check if one of the defined registers of the 
current operation is used by a preceding 
unscheduled operation.

unscheduled unscheduled current

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Rescheduling Algorithm
while not all operations are scheduled do

Create a new empty instruction currInstr
for slot := 1 to 4 do

if EU[slot] = 0 then
for reg := 0 to 64 do

Def[reg] := 0; Use[reg] := 0; 
od
for each op in priority order do

if op.time = currInstr then
Def[op.dst] := 1;             

fi

-

- 4 5 6

mul addmul

Process each slot of the new instruction.

Search an operation for the current 
slot of the current instruction.

Handle multi-cycle
operations

-

- 4 5 6
mul

add
mul

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

39

if op.state != scheduled then
if CanBeScheduled(slot,op) &&

Def[op.Src1]=0 && Def[op.Src2]=0 &&
Use[op.Dst]=0 && Def[op.Dst]=0

then
EU[i] := lat(op); 
instr[slot] := op;
op.time := currInstr;
lastDef[op.dst] := currInstr;
op.state := scheduled;
break;

else
Use[op.Src1] := 1; Use[op.Src2] := 1;
Def[op.Dst] := 1

fi
fi

od
fi

od
if EU[1] > 0 then EU[1]--;   if EU[2] > 0 then EU[2]--;   
if EU[3] > 0 then EU[3]--;   if EU[4] > 0 then EU[4]--;

od

Process only 
unscheduled 
operations from 
the priority list.

Check for available resources.

Check for True-
Dependencies.

Check for Anti- and Output-
Dependencies.

Schedule the unscheduled operation.

Operation remain unscheduled. 
Update Use-/Def-information.

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Repair Time

SW-Rebinding Scoreboarding

Benchmark 1-operator 
fault

1-execution unit 
fault

1-operator 
fault

1-execution unit 
fault

ARF 2103 1950 9246 15592

DIF 3246 2730 9607 26872

FFT 3190 2535 11145 23464

Runtime of the SW-based Self-Repair routines in clock cycles

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

40

• 10% of the code is time critical.
• Average size of a time critical basic block is 

14 instructions.
• Average size of a non-time critical basic 

block is 7 instructions.
• SW-rebinding on average: 240 clock cycles 

per instruction.
• Rescheduling on average: 35200 clock 

cycles for time-critical and 14100 clock 
cycles for non-time critical basic blocks.

• Clock rate of about 50 MHz.

EWF 2956 3120 45582 47862

DIT 3650 3510 19643 36616

LEE 4240 3315 15929 37651

Instructions in 
application

static overhead for 
SW-rebinding

static overhead for 
Scoreboarding

16000 0,07s 0,66s

64000 0,31s 2,64s

256000 1,23s 10,57s

Estimated static runtime overhead in seconds 
for three different application scenarios

Assumptions:

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Runtime of the Application

class 1-operator fault 1-execution unit fault 2-operator fault 2-execution unit fault

Method HR Sc SR HR Sc SR HR Sc SR HR Sc SR

ARF 63% 25% 25% 100% 25% 25% 125% 25% 38% 200% 75% 88%

DIF 82% 2 % 3 % 100% 3 % 64% 136% 64% 91% 200% 118% 91%

Worst-case execution time overhead for several operator- and EU-fault 
classes

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

41

DIF 82% 27% 37% 100% 37% 64% 136% 64% 91% 200% 118% 91%

FFT 70% 20% 10% 100% 40% 30% 130% 90% 50% 200% 130% 80%

EWF 93% 7% 0% 93% 43% 14% 150% 36% 21% 171% 36% 36%

DIT 57% 7% 7% 100% 21% 29% 107% 36% 50% 200% 71% 79%

LEE 79% 43% 0% 100% 43% 21% 157% 43% 29% 200% 86% 79%

Average: 74% 22% 13% 99% 35% 31% 134% 49% 47% 195% 86% 76%

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Reliability

0 7

0,8

0,9

1
Rnft

RSW

RHW

VLIW with HW-Rebinding VLIW with SW-Rebinding

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

42

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

t *Lambda *107

R
el

ia
bi

lit
y

VLIW without HW-Rebinding



8

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Summary – Software-Based Self-Repair

• Pure software-based self-repair scheme:
– No extensions within the core itself.
– The repair routine is executed on the faulty core 

itself.

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

43

– Administration of spare resources by software.

• Cores that were not designed to be fault 
tolerant can be made fault tolerant.

• Scaling the reliability in software by 
specifying the number of tolerable faults and 
then compiling the application.

• Static runtime overhead in the range from a 
fraction of a second up to a few seconds.

Computer Engineering Group

Hybrid Self-Repair

44

Off-Line

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Architecture for hybrid method

A li ti

Jmp to Test+Repair Routine 0
Arbiter

Jmp to Test+Repair Routine 1Jmp to Test+Repair Routine 2Jmp to Test+Repair Routine 3

Program 
Memory 

Bus d
d

r

o
n

d
d

r
d

d
r

a
ta

a
ta

C
tr

l

Data 
Memory 

Bus

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

45

VLIW Core

Program Memory

Application

Test+Repair Routine 0

Test+Repair Routine 1

Test+Repair Routine 2

Test+Repair Routine 3

R
eset

p
M

e
m

A
d

in
st

ru
ct

i

d
M

e
m

A
d

d
M

e
m

A
d

d
M

e
m

D
a

d
M

e
m

D
a

d
M

e
m

C

Data 
Memory

FE

DE

EX

WB
Slot

1
Slot

4

Rebinding

R
e

g
is

te
r 

F
il

e

RP

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Simplified Start-up

A li ti

Jmp to Test+Repair Routine 0
Arbiter

Program 
Memory 

Bus d
d

r

o
n

d
d

r
d

d
r

a
ta

a
ta

C
tr

l

Data 
Memory 

Bus

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

46

VLIW Core

Program Memory

Application

Test+Repair Routine 0

Test+Repair Routine 1

Test+Repair Routine 2

Test+Repair Routine 3

R
eset

p
M

e
m

A
d

in
st

ru
ct

i

d
M

e
m

A
d

d
M

e
m

A
d

d
M

e
m

D
a

d
M

e
m

D
a

d
M

e
m

C

Data 
Memory

FE

DE

EX

WB
Slot

1
Slot

4

Rebinding
R

e
g

is
te

r 
F

il
e

RP

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Partial Repair

Jmp to Test+Repair Routine 0
Arbiter

R
es

e

Program 
Memory 

Bus

M
e

m
A

d
d

r

st
ru

ct
io

n

M
e

m
A

d
d

r
M

e
m

A
d

d
r

M
em

D
a

ta
M

em
D

a
ta

M
e

m
C

tr
l

Data 
Memory 

Bus

Time Critical

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

47

VLIW Core

Program Memory
Application

Test+Repair Routine 0

e
t

p
M in
s

d
M

d
M

d
M

d
M d
M

Data 
Memory

FE

DE

EX

WB
Slot

1
Slot

4

Rebinding

R
e

g
is

te
r 

F
il

e

RP

Time Critical

Time Critical

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Extended Reliability

Jmp to Test+Repair Routine 0
Arbiter

R
es

e

Program 
Memory 

Bus

M
e

m
A

d
d

r

st
ru

ct
io

n

M
e

m
A

d
d

r
M

e
m

A
d

d
r

M
em

D
a

ta
M

em
D

a
ta

M
e

m
C

tr
l

Data 
Memory 

Bus
Time Critical

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

48

VLIW Core

Program Memory
Application

Test+Repair Routine 0

e
t

p
M in
s

d
M

d
M

d
M

d
M d
M

Data 
Memory

FE

DE

EX

WB
Slot

1
Slot

4

Rebinding

R
e

g
is

te
r 

F
il

e

RP

Time Critical

Time Critical

Scheduled to handle a 1-execution unit fault:

NOP ADD NOP ADD
NOP ADD MUL ADD
NOP ADD NOP ADD



9

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Summary – Hybrid Methods
• Simplified Start-Up:

– One self-repair routine is sufficient.

• Partial repair reduces repair-time:

Instructions 
in 

application

static overhead 
for SW-

rebinding

static overhead for 
Scoreboarding

static overhead for 
HSW

static overhead 
for HSC

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

49

• Extended Reliability:
– Handling of fault situations, which can not be handled by pure SW-

based methods, is possible.
– Certain amount of faults can be handled without graceful 

degradation by software-based methods; after that graceful 
degradation.

• Hybrid methods provide a good compromise between repair-
time and performance degradation.

16000 0,07s 0,66s 0,007s 0,08s

64000 0,31s 2,64s 0,03s 0,32s

256000 1,23s 10,57s 0,12s 1,29s

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Summary – Off-Line Self-Repair

Method Dynamic runtime 
overhead

Static runtime 
overhead Reliability HW-

overhead
Allowed operation 

latency

HR high none high low 1

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

50

SR low medium scalable none 1

SC low high scalable none arbitrary

HSR low to medium low high low 1

HSC low to medium medium high low 1

Message:
Move as much of the administrative work as 

possible into software!

Computer Engineering Group

Lowering the Self-Repair Granularity

51

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Fault-Handling at Slot/Operator-Level
Slot-Level:

 L
o

g
ic

 (
C

tr
l)

R
ea

d
Po

rt
R

ea
d

Po
rt

All components of a slot are 
critical.

Op1 Op2 Op3 Op4

Op5 NOP Op6 Op7

self-repair

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

52

C
o

n
tr

o
l

R
eg

is
te

r F
ile

R
ea

d
Po

rt
R

ea
d

Po
rt

P
C

M
A

R

M
B

R

Op1

Op2 Op3 Op4

Op5

Op6 Op7

NOP

NOP

NOP

NOP NOP

Operator-Level:
All components of a slot 
(except EUs) are critical.

Op1 Op2 Op3 Op4

Op5 Op6 Op7NOP

Op1 Op2 Op3 Op4

Op5 Op6 Op7NOP

self-repair

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Rescheduling Algorithm
while not all operations are scheduled do

Create a new empty instruction currInstr
for slot := 1 to 4 do

if EU[slot] = 0 then
for reg := 0 to 64 do

Def[reg] := 0; Use[reg] := 0; 
od
for each op in priority order do

if op.time = currInstr then
Def[op.dst] := 1;             

fi

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

53

if op.state != scheduled then
if CanBeScheduled(slot,op) &&

Def[op.Src1]=0 && Def[op.Src2]=0 &&
Use[op.Dst]=0 && Def[op.Dst]=0

then
EU[i] := lat(op); instr[slot] := op;
op.time := currInstr;
lastDef[op.dst] := currInstr;
op.state := scheduled;
break;

else
Use[op.Src1] := 1; Use[op.Src2] := 1;
Def[op.Dst] := 1

fi
fi

od
fi

od
if EU[1] > 0 then EU[1]--;   if EU[2] > 0 then EU[2]--;   
if EU[3] > 0 then EU[3]--;   if EU[4] > 0 then EU[4]--;

od

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Modeling Faults for Slot- and Operator-
Level

• Fault state of EU k is described by Fk(i).

• Thereby:
– Fk(i) = 0 iff operator i can be used

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

54

Fk(i) = 0, iff operator i can be used,

– Fk(i) = 1, iff operator i can not be used.

• If for all i holds Fk(i) = 0, then the whole 
slot k can not be used anymore.

• CanBeScheduled(slot,op) :=
Fslot(op).



10

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Size of the Components

 L
o

g
ic

 (
C

tr
l)

R
ea

d
Po

rt
R

ea
d

Po
rt

Component Transistors Instances

Ctrl 800 1

FE-Reg 580 4

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

55

C
o

n
tr

o
l

R
eg

is
te

r F
ile

R
ea

d
Po

rt
R

ea
d

Po
rt

P
C

M
A

R

M
B

R

DE-Reg 1300 4

Bypass 1400 8

EU 7000 4

WB-Reg 500 4

RP 6900 8

REG 890 64

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Fault-Handling at Read-Port-Level
Read-Port-Level:

 L
o

g
ic

 (
C

tr
l)

R
ea

d
Po

rt
R

ea
d

Po
rt

Pipeline registers and 
bypasses are critical.

If there is a fault in a read 
port, then only a certain 

Effect of Self-Repair:

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

56

C
o

n
tr

o
l

R
eg

is
te

r F
ile

R
ea

d
Po

rt
R

ea
d

Po
rt

P
C

M
A

R

M
B

R

subset of the registers in the 
register file can be accessed 
through this read port.

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Structure of a Read Port

Bit 0 of registers Bit 15 of registers

...

0 1 2 62 63

Multiplexer

...

0 1 2 62 63

Multiplexer

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

57

Multiplexer 
Tree 

...

Bit 0 Bit 15

...

Multiplexer 
Tree 

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Structure of a Multiplexer Tree
Bit 0 of registers

1

0 1

2

2 3

3

4 5

4

6 7

33 34

...

...

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

58

Stuck-at Fault in a 2:1-
multiplexer can be 

masked.

49 ...

...

Bit 0

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Adapting the Self-Repair Algorithm

• Fault-state of the read port in slot k:
– left: rpState[2*k]
– right: rpState[2*k+1]

• Thereby:

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

59

y
– rpState[i][r] = 0, if register r can be 

accessed correctly via read port i,
– rpState[i][r] = 1, if register r can not be 

accessed correctly via read port i.
• CanBeScheduled(slot,op) := 

Fslot(op) && 
rpState[2*slot][op.src1] &&
rpState[2*slot+1][op.src2]

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Fault-Handling at Bypass-Level
Bypass-Level:

 L
o

g
ic

 (
C

tr
l)

R
ea

d
Po

rt
R

ea
d

Po
rt

Pipeline register are critical.

Do not use forwarding from 
EX-stage into DE-stage, if 

Effect of Self-Repair:

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

60

C
o

n
tr

o
l

R
eg

is
te

r F
ile

R
ea

d
Po

rt
R

ea
d

Po
rt

P
C

M
A

R

M
B

R

this network is faulty.

Do not use forwarding from 
WB-stage into DE-stage, if 
this network is faulty.

If a read port is faulty, then 
feed the slot with data via the 
bypass.



11

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Structure of the Bypass

...1 44 1 RP... ...1 44 1 RP...

B
it

s
 0

 f
ro

m
E

X
-S

ta
g

e
 

B
it

s
 0

 f
ro

m
W

B
-S

ta
g

e
 

B
it

s
 0

 f
ro

m
R

e
a

d
 P

o
rt

 

B
it

s
 1

5
 f

ro
m

E
X

-S
ta

g
e

 

B
it

s
 1

5
 f

ro
m

W
B

-S
ta

g
e

 

B
it

s
 1

5
 f

ro
m

R
e

a
d

 P
o

rt
 

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

61

Multiplexer Tree ...

Bit 0 Bit 15

...

Multiplexer Tree 

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Adapting the Self-Repair Algorithm
• Fault-state of the bypasses in slot k:

– left: bypassState[2*k]
– rigth: bypassState[2*k+1]

• Thereby:
– bypassState[i] & 1 = True, iff forwarding from the EX-stage into the DE-stage can be used.
– bypassState[i] & 2 = True, iff forwarding from the WB-stage into the DE-stage can be used.

• currInstr – lastDef[r] ist the number of past clock cycles since the latest definition 
of register r.

• CanBeScheduled(slot op) :

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

62

• CanBeScheduled(slot,op) := 
Fslot(op) && 
(currInstr - lastDef[op.src1] = 1 && (bypassState[2*slot] & 1) ||
currInstr - lastDef[op.src1] = 2 && (bypassState[2*slot] & 2) ||
currInstr - lastDef[op.src1] > 2 && (rpState[2*slot][op.src1]) &&

(currInstr - lastDef[op.src2] = 1 && (bypassState[2*slot+1] & 1) ||
currInstr - lastDef[op.src2] = 2 && (bypassState[2*slot+1] & 2) ||
currInstr - lastDef[op.src2] > 2 && (rpState[2*slot+1][op.src2])

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Fault-Handling at Register-Level
Register-Level

 L
o

g
ic

 (
C

tr
l)

R
ea

d
Po

rt
R

ea
d

Po
rt

The usage of certain 
registers is avoided by 
register renaming.

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

63

C
o

n
tr

o
l

R
eg

is
te

r F
ile

R
ea

d
Po

rt
R

ea
d

Po
rt

P
C

M
A

R

M
B

R

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Structure of a Register
r c 

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

64

D
es

tin
a

tio
n

 r
eg

is
te

nu
m

b
er

 (
D

st
) 

fr
o

m

C
om

pa
re

 lo
g

ic
(=

k)

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Adapting the Rescheduling-Algorithm

...
if CanBeScheduled(slot,op) &&

Def[op.Src1]=0 && Def[op.Src2]=0 &&
Use[op.Dst]=0 && Def[op.Dst]=0

then
EU[i] lat(op)

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

65

EU[i] := lat(op); 
instr[slot] := rename(op);
op.time := currInstr;
lastDef[op.dst] := currInstr;
op.state := scheduled;
break;

else
Use[op.Src1] := 1; 
Use[op.Src2] := 1;
Def[op.Dst] := 1

fi
...

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Results - Runtime

• Four injected Faults:
– Adder in slot 2,
– Left bypass in slot 1 (Forwarding from EX-stage defect),
– Registers 1 to 4 und 5 to 6 can not be accessed via the left 

read port in slot 4.

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

66

Benchmark

Level of the Repair

Slots Slots & 
Operators

Slots & 
Operators & 
Bypasses

Slots & Operators & 
Bypasses & Read ports

ARF (8) 350% 200% 125% 113%

FFT (10) 380% 270% 160% 120%

EWF (14) 243% 193% 129% 107%



12

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Results – Fault Injection

• Fault Injection in 1.000.000 VLIWs.

• 10 injected faults in each VLIW system.

• Surviving VLIWs if self-repair takes place at 
l t l l 0 3%

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

67

slot level: 0,3%.

• Surviving VLIWs if self-repair takes place at 
slot- and register level: 51%.

• Surviving systems if self-repair takes place at 
all levels of granularity: 82%.

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Summary – Lowering the Granularity

• Fine-grained self-repair method for statically 
scheduled data paths.

• Refining the granularity does not require 
additional hardware (already existing 

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

68

( y g
switches in the system are employed).

• Multiple Faults did not reduce dramatically 
the run time of the application.

• Number of surviving systems is increased 
very much compared to coarse-grained 
approaches.

• Demands for the granularity for a diagnostic 
self-test are defined.

Computer Engineering Group

Hybrid Self-Repair

69

On-Line

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Non-Fault Tolerant Architecture

FE

DE

Program Memory

FE-Reg 1 FE-Reg 2 FE-Reg 3 FE-Reg 4

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

70

DE

EX

WB
Slot 1

EU 1

DE-Reg 1

WB-Reg 1

Slot 2

EU 2

DE-Reg 2

WB-Reg 2

Slot 3

EU 3

DE-Reg 3

WB-Reg 3

Slot 4

EU 4

DE-Reg 4

WB-Reg 4

R
eg

is
te

r 
F

ile

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Idea of the Fault Tolerant Approach

• Compiler Support:
– Duplication of each operation. 

– Scheduling original and duplicate on different 
execution units.

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

71

– The result of an original operation is not used 
before the duplicated operation is executed.

• Hardware Support:
– Comparing results of original and duplicated 

operations in hardware.

– Recovery-Mode: Re-execution of failed 
operations in order to obtain a third result.

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Fault Tolerant Architecture

FE

Program Memory

FE-Reg 1 FE-Reg 2 FE-Reg 3 FE-Reg 4
Rebinding Logic

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

72

DE

EX

WB
Slot 1

EU 1

DE-Reg 1

WB-Reg 1

Slot 2

EU 2

DE-Reg 2

WB-Reg 2

Slot 3

EU 3

DE-Reg 3

WB-Reg 3

Slot 4

EU 4

DE-Reg 4

WB-Reg 4

R
eg

is
te

r 
F

ile

Te
m

po
ra

ry
R

eg
is

te
r 

F
ile

EU 1

WB-Reg 1

FDCL 1 FDCL 2 FDCL 3 FDCL 4



13

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

FE

DE

Task of the Rebinding Logic

FE-Reg 1 FE-Reg 2 FE-Reg 3 FE-Reg 4
Rebinding Logic

Op A Op B Op C Op D

Op A Op B Op C Op DOp E Op F Op G Op H

… in normal operation mode:

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

73

FE

DE

EX

EX
DE-Reg 1 DE-Reg 2 DE-Reg 3 DE-Reg 4

FE-Reg 1

DE-Reg 1

FE-Reg 2

DE-Reg 2

FE-Reg 3

DE-Reg 3

FE-Reg 4

DE-Reg 4

Rebinding Logic
Op A Op C Op D

… in recovery mode:

Op A Op C Op DOp B NOP NOPNOP Op BOp A

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Task of the FDCL

+ R3R6 R0 T710

… for original operations: … for duplicated operations:

2

Compiler Support:

New instruction format:

mode: original/duplicated

register in the temporary register file

unit that executes duplicated/original operation

Each operation is duplicated.

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

74

DE-Reg

FDCL 1

EU 1

WB-Reg

Te
m

po
ra

ry
R

eg
is

te
r 

F
ile

… for original operations: … for duplicated operations:

opL opR + R3R6 R0 T710 2

Result1Result1

DE-Reg

FDCL 2

EU 2

WB-Reg

Te
m

po
ra

ry
R

eg
is

te
r 

F
ile

opL opR + R3 R6 R0 T711 1

Result2

?
=

Result1

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Fault Localization and Recovery
Comparing detects a mismatch:

DE-Reg DE-Reg
Rebinding Logic

opL opR + R3 R6 R0 T711 1

R lt3

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

75

FDCL 2

EU 2

WB-Reg

Te
m

po
ra

ry
R

eg
is

te
r 

F
ile

Result2 Result1!= FDCL 3

EU 3

WB-Reg

Te
m

po
ra

ry
R

eg
is

te
r 

F
ile

Result1

?
=

Result3

Result3 == Result1 Result3 != Result1

Fault in EU 2 Fault in EU 1

F
au

lt
S

ta
te

F
au

lt
S

ta
te

Result1

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Handling of Permanent Faults

Original operation executes on faulty unit:

DE-Reg
Rebinding Logic

DE-Regoriginal operation duplicated operation

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

76

FDCL 1

EU 1

WB-Reg

FDCL 2

EU 2

WB-Reg

Te
m

po
ra

ry
R

eg
is

te
r 

F
ile

Result1

Result2

F
au

lt
S

ta
te

F
au

lt
S

ta
te

Result1

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Handling of Permanent Faults
Original operation executes on faulty unit:

EU 1

DE-Reg

EU 2

Rebinding Logic

Result2

DE-Reg

Result1

original operation duplicated operation

Result1

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

77

FDCL 1

EU 1

WB-Reg

FDCL 2

EU 2

WB-Reg

Te
m

po
ra

ry
R

eg
is

te
r 

F
ile

Result1

Result2

F
au

lt
S

ta
te

F
au

lt
S

ta
te

Result1Result1

If both results are equal, a transient 
error has been discovered before.

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Synthesis Results
Architecture Number of transistors Transistors per slot that can fail

VLIW (4 slots) 111.500 + EUs None

FT VLIWlate (4 slots) 142.700 + EUs 4000 + EU

FT VLIWearly (4 slots) 143.400 + EUs 22.200 + EU

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

78

early ( )

VLIW (2 slots) 54.500 + EUs None

TMR (6 slots) 123.200 + EUs 17.000 + EU

FE

DE

EX

WB
Slot

1
Slot

2

FE

DE

EX

WB
Slot

1
Slot

4

FE

DE

EX

WB
Slot

1
Slot

4

FE

DE

EX

WB
Slot

1
Slot

4

Rebinding

Rebinding

FE

DE

EX

WB

Slot
1

Slot
2

Slot
1

Slot
2

Slot
1

Slot
2

Voting

VLIW2VLIW4 FT VLIW4earlyFT VLIW4late TMR



14

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Reliability Results

0,6

0,7

0,8

0,9

1

m
 S

iz
e

d
 E

U
s

VLIW4 VLIW2

TMR FTVLIW (late)

FTVLIW (early)

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

79

0

0,1

0,2

0,3

0,4

0,5

0,6

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196

Lambda*t*107

R
e

lia
b

ili
ty

 fo
r 

M
e

d
iu

m

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Reliability Results

0,6

0,7

0,8

0,9

1

e 
S

iz
ed

 E
U

s

VLIW4 VLIW2

TMR FTVLIW (late)

FTVLIW (early)

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

80

0

0,1

0,2

0,3

0,4

0,5

0,6

0 4 8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

Lambda*t*107

R
el

ia
b

ili
ty

 fo
r 

La
rg

e

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Summary – On-Line Self-Repair

• HW/SW-based method: 
– for the detection of transient faults by concurrent execution 

and
– recovery from faults with localization of permanent faults by 

re-execution and majority vote (only 1 to 2 clock cycles).

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

81

• A detected permanent fault is masked without delay.
• Capability of detecting all faults get lost after an 

occurred fault.
• Simplicity of the processor is maintained; it remains 

scalable.
• Applicable for statically scheduled data paths with 

medium to large scaled EUs.
• Reliability can be traded against performance by the 

compiler.

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

Summary – Overall
Self-Repair of programmable statically 

scheduled processors

On-Line Off-Line

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

82

Hybrid Hardware

Single Fault.
Handling of multiple permanent faults.

Strong Run-Time 
Overhead.

No Static Repair-Time.

Integrated handling of transient 
and permanent faults. Seperated handling of transient faults required.

Software

Rebinding

Low Run-Time Overhead.

High Static Repair-Time.

Hybrid

Scheduling

Medium Run-Time 
Overhead.

Low Static Repair-Time.

Computer Engineering Group

Introduction

HW Self-Repair

SW Self-Repair

Rebinding

Rescheduling

Hybrid Off-Line

Lower Granularity

Hybrid On-Line

Summary

What's Coming Next?
Self-Repair of programmable statically 

scheduled processors

On-Line Off-Line

Handling of single faults and 
detection/localization of 

permanent faults.
Running the system in 

emergency state.

Handling of permanent fault

Mario Schölzel

CREDES Workshop 

Tallinn, September, 2010

y

83

Hybrid Hardware Software

Rebinding

Hybrid

SchedulingOff-Line

Software

Rebinding

Hybrid

Scheduling

Handling of permanent fault 
and restore the complete 

diagnostic capability.

Multi-Core systems with 
embedded compilers.

Design for self-repair.

Computer Engineering Group

Thank You for Your Attention

84

Thank You for Your Attention.


