10/8/2010

! =§ ! Qutline =§

SyntheSis of Circuits and 1. Introduction (Embedded Systems, Computing and

& S Control Lab.
Systems from Hierarchical and 2. The Muthods Introduction &
3. Practical Applications Case Studies

Parallel Specifications

4. Hierarchical and Parallel Specifications
- . 5. Hierarchical Finite State Machines (HFSM)
Valery Skiyarov, loullia Skllarova 6. Synthesis of HFSM from Hierarchical and Parallel
Specifications Details
University of Aveiro, Portugal
DETIUA/IEETA 7. Practical Applications and Examples U &
8. Experiments and the Results se
! u{l 9. Conclusion Comparison
5 o iesla el gy z

niroduction
Pﬁvnadgva;} . B “% B

1. Introduction (Embedded Systems, Computing and
o SR Introduction &
3. Practical Applications Case Studies |

[

. Hierarchical and Parallel Specifications

. Hierarchical Finite State Machines (HFSM)

. Synthesis of HFSM from Hierarchical and Parallel a
Specifications

(< I -3

. Practical Applications and Examples
. Experiments and the Results —
. Conclusion

© 0 ~

i

CREDES Workshop, Tallinn University of CREDES Workshop, Tallinn University of
Technology - 23 September 2010 3 Technology - 23 September 2010 4

Biology;
Ceramics and Glass Engineering;
Chemistry;

Civil engineering;

Communication and the art;

Didactics and Educational Technology;
Economics, Management and Industrial
Engineering;

Education;

Electronics, Telecommunications and
informatics;

Environment and Planning;

i Geoscience

Languages and Cultures;

Mathematics;

Mechanics;

Telecommunications
Institute
The department

Electronics and Telematics

Physics;
Social, Legal and Political Sciences Institute (| E ETA)
CREDES Workshop, Tallinn University of CREDES Workshop, Tallinn University of
Technology - 23 September 2010 5 Technology - 23 September 2010 6

10/8/2010

Teaching staff: 98
Staff with Ph.D.: 83
department Professors: 12

Associate Professors: 17

Assistant Professors 30

Invited Assistant Professors 20

Students:

- MIECT: 382

- MIEET: 797

- ERASMUS students: 20 (Belgium, Czech Republic,

England, Hungary, Germany, ltaly, Netherlands, Poland, Serbia, Spain, etc.)
CREDES Workshop, Tallinn University of Eﬁmiﬁ CREDES Workshop, Tallinn University of
Technology - 23 September 2010 7 Technology - 23 September 2010 8

Undergraduate Programs: Doctoral Programs:
Technology and Information Systems Computer Engineering;
Undergraduate and Master Programs: Electrical Engineering;
Computer Engineering and Telematics; Dual Degree in Electrical and Computer Engineering
Electronic Engineering and Telecommunications with Carnegie Melon University;
Master Programs: Telecommunications;
Industrial Automation Engineering; Computer SC|enlce .
Genomics and Bioinformatics Master Programs with other countries:
Master of Science in Information Networking (MSIN) with Cape Verde;
Carnegie Melon University Mozambique
CREDES Workshop, Tallinn University of CREDES Workshop, Tallinn University of
Technology - 23 September 2010 3 Technology - 23 September 2010 10

s e . T b

Instituto de Engenharia Electrénica e Telematica de Aveiro
Institute of Electronic Engineering and Telematics: Instituto de Telecomunicagdes
http://www.ieeta.pt Institute of Telecommunications:
http://www.ieeta.pt/~pjf/aval/ieeta.pdf http://www.it.pt
CREDES Workshop, Tallinn University of CREDES Workshop, Tallinn University of
Technology - 23 September 2010 " Technology - 23 September 2010 12

%.di"rﬂ?i

CAMBADARSboCUp —
World Champion, 20

http://www.ieeta pUatri/cambadal

4 =™ "7 DynamicQos
I_ management

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

10/8/2010

T —

roduction

Embedded Systems, Computing and Control

Research Area: Computational systems with polymorphic
(reconfigurable) architectures based on enhanced components
and model-oriented methodologies targeted to acceleration of

application-specific algorithms, embedded applications,
robotics, and control
CREDES Workshop, Tallinn University of
14

Technology - 23 September 2010

e RN TR

Embedded Systems, Computing nud Control Lab

“To Wboratry s composed of three researchgoups:

Embedded Systems, Computing and Control Lab

—

on svnonces companents and moseloriznted memodaogies weted t aeceleration of

p Professor Professor

’\ Research areas:

| architeaures ‘computing

Associate professor || Associate professor

—— Researcn ress:

S + Control

* Distributed systams. v

Assistant professor | | Assistantprofessor
Researeh areas:

Research areas
+ Robotics

+ Computar arhitecture
+ Reconfigurabiasystems

+ Poweralectranics
+ Instrumentation systems

Assistant professor | | Assistant professor
Research areas Research areas:
Reconfiursbiesystems ||+ Embedded systems
Digitsldesien
Applcationspecic
sreniteaurss

Researcher

Research areas:

Rabori

- FPGAbasedsytems | |

+ Repid prototyping

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

HIiPEAC — FP7 European Network of Excellence on High
Performance and Embedded Architecture and Compilation

Use of HP Mobile Technology to Enhance Teaching
Reconfigurable Systems — Hewlett Packard grant-award

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

Hardware Implementation of Recursive Algorithms -

Alexander Sudnitson

Touliia Skliarova

Dmitri Mihhailoy Valery Sklyarov
Computer Department, IEETA. Computer Department,
TUT, TUT,

Tallinn, Estonia Tallinn, Estonia
dmibhailov@iiu.ee alsu@ec.tiuee

53rd IEEE International Midwest Symposium on Circuits and Systems Seattle,
Washington

Application-specific hardware accelerator for optimization of FPGA-based Circuits for Recursive Data Sorting

implementing recursive sorting algorithms

Dt Misbailov, Valery Sklyarov *, oulia Sklarova *, Alexander Sudaitson**

D. Mibhailov!, V. Skyarov?, I. SkliarovaZ, A. Sudnitson!

echnoogs E ; 77 Reja 15, 12615
“DETUIEET4, Universty of dsehs, Portugal, E-malls: i@uapt, loulia@uapt

«CED, allom
Tal

FPT'2010 BEC'2010

Optimization of Recursive Sorting Algorithms for
Implementation in Hardware

Alexander Sudnitson

‘Computer Deparument,
University of Aveiro, TUT

Dmitri Mibhailov Valery Sklyarov Toulita Skliarova

‘Computer Deparument,
UT

Tallinn, Estonia
dmibhailov@.e ski@uapt

oulifa@uapt

IEEE International Conference on Microelectronics

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

e ———

ntroduc

The laboratory is composed of three research groups:

Reconfigurable systems

Embedded systems and application-specific electronics

\Robotics and control

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

Design of embedded systems and their components can be
hased on different methods, architectural solutions and
tools and we would like to consider one potential way that
combines the following technigques:

Meodular and Hierarchical Specifications;

Potentialities of Parallelism;

Synthesis of Hardware Circuits and their Optimization
hased on the model of a Hierarchical Finite State Machine

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 19

B A%
Reuse
Compuiational sysiem

==
i
o

@)perations
/)

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

Any module can be reused
Any module can be refined

10/8/2010

20

Reuse

Computational sysiem

@)perations

Synthesize
Hardware
Circuits

|
|
Q

CREDES Workshop, Tallinn University of

Technology - 23 September 2010 21

Examples of Practical
Applications

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

22

Functionality:

Any incoming car is stopped in
front of the entrance gate where
there is an eventual queue in
case if there are no free parking
slots in the garage.

A driver leaves the car and then
the system is responsible for
further steps of parking.

Requests for retrieving cars from
the garage are formed by car
owners. The selected car drives
automatically to the exit gate and
then is parked in a place where
the car owner waits.

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 23

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

24

I Central ;UT,__sy_séa T Car sub-systems
Managing parking
slots and priorities

CREDES Workshop, Tallinn University of

Technology - 23 September 2010 25

Potentialities of using
diiferent techniques for
describing algorithims,
such as recursive and

iterative techniques

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

10/8/2010

26

. right node of

1) 17 root of a binary tree the node 18, because
2) 6 left nog 21>17and 21> 18
3) 18 ¢ because 6 < 4,
4) 9
5) 5
6) 21
e (@)

left node of

the node 6, because
5<17and5<6

right node of
the node 6, because
9<17and9>6

right node pecause 18 > 17

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 27

Module

] 1. Executing operations;
execution

2. Selecting bottom (left
or right) node

Recursive Module
execution

1. Executing operations;
2. Selecting bottom (left

or right) node or right) node

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

Recursive Moduld
execution

1. Executing operations;
2. Selecting bottom (left

28

ub-tree does
not exist

i) Save cumentaddress,
2) Write an address of the leftnode;
3) Activate recursively the module

v

Save current address;
2) Write an address of the right nodé
3) activate recursively the module

End (restore the address of]|
the previous node)

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 29

More clear specification

Faster implementation

Potentialities for
customization,
adaptation and

virtualization at the level

of hardware

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

30

Variable Fix?d instr;uc- Vartiable ins-
. . on se N
instruction < truction set ¢ _
et ool &Y Ll 18
processor a Ll §& [[mplementation]| g
9 %,Qoé' (}?’69 of variable | g
<
o | &K NS instructions | g
— SIS v? ©
e g S S
master

Bus

slave slave slave

ROM 1/O

CREDES Workshop, lallinn University ot
Technology - 23 September 2010

31

10/8/2010

Auxiliary FPGA
for remote

Dedicated FPGA customization

Combinatorial Search Problems Solver

)

SAT
Cov

Peripheral Controllers

Input/Output @
Variable Fixed
N Interface N
Instruction Instruction
Set Co- Set
processor Processor

Customization of
microprograms for
instructions

Customization Circuits

Reloading the’
program

Data for reloading the program and
customization of microprograms

S

CREDES Workshop, Tallinn University of

Technolol-]x— 23 September 2010 2

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

33

Communication between the processor and
the co-processor is established as follows:

Decoder of the * When the program of the fixed
instructions instruction-set processor requires just
1‘11 llzl ;ziq,Iz‘.,.‘ ————————— application-independent or shared

(common) application-specific instructions, it
is executed entirely in the processor;

* As soon as an application-specific (not
common) instruction is required, the
processor sends the instruction code to the
co-processor. The latter activates a micro-
program based on given association in the
End virtual table. As soon as the results are
ready they are sent back to the processor.

Virtual table
instruction

micro-program

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 34

1
next state 1

next module !
(instruction) !

Stack memory

current
module,

current state,
—

Reconfiguration
Controller

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

External memory (ROM)

35

SAT - covering

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 36

4. Hierarchical and Parallel Specifications

5. Hierarchical Finite State Machines (HFSM)

6. Synthesis of HFSM from Hierarchical and Parallel
Specifications Details

Practical Applications and Examples
Experiments and the Results
Conclusion

© ™ N

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 37

10/8/2010

\lr Yar¥siZ1,Z;

| End | l,

compareaandb

b)

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 38

Modularity
and hierarchy

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 39

Extracting
data from
the tree

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 40

)

| process (clock,resst) —— the first process for the blocks
| begin - M stack and FSM stack
if resst='1" then
-- setting to an initial state and initializing
elsif rising edge(clock) then
-- test for possible error
-- executing tramsitions of the follewing types
-— a) between states within the same module i
== b) between states that belong to different modules |
end if; :
| end procass;

§==m Reusable part

inputs

Bl new next | Control:clock,
Control: clock, reset, push,& W‘ \ l stale | resel, push, pop.
i 1Ll o

Combinational

Structure: circuit (CC) & Customizable part
,,,,,,, H <+
:)
3
outputs l &
i ; :
process (current_module,current_state,inputs) i
"begin - the second process for the block CC | THIS TEMPLATE
1" case m_stack(stack_pointer) 1s ; PROVIDES SUPPORT
-- state transitions within medules h
! -~ repeating for all modules i FOR RECURSION IN
: end process; i HARDWARE
CREDES Workshop, Tallinn University of
Technology - 23 September 2010 A

yithesis:

1.Marking the given HGSs with labels that will be
considered as the HFSM states.

2.Customizing the proposed HDL templates for the
combinational circuit.

3.Synthesis of HFSM circuits from the customized
VHDL templates using commercially available
computer-aided design tools, such as ISE of Xilinx.

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 42

10/8/2010

Extracting
data from
the tree

2.Customizing the proposed HDL templates for the
combinational circuit.

3.Synthesis of HFSM circuits from the customized
VHDL templates using commercially available
computer-aided design tools, such as ISE of Xilinx.

CREDES Workshop, Tallinn University of CREDES Workshop, Tallinn University of
Technology - 23 September 2010 Technology - 23 September 2010 44

fple:

-- setting to an initial state and initializing H when z0 =>
elsif rising edge(elock) then
- test for possible error

> process (FSM_stack,M_stack) — sensitivity list includes also inputs from datapath Customizable part
| process (clock,resst) —— the first process for the blocks H begin
| begin -- M stack and FSM stack H inc <='0'; dec <=0;
! if reset='1l" then H case M_stack(stack_pointer is

case FSM_stack(stack_pointeris
when a0 => outputs_to_datapath <= (others =>'0'); |

-- executing transiticns of the feollewing types NS <= aft; I 4

: -- a) between states within the same module when a1 => outputs_to_datapath <= (others => '0');

! -- b) between states that beleng to different modules if x5='0" then NS <=a1;

i end if; 5 else NS <= a2; ay

inputs : . end if; S

| i | Contral:clock, if return_fla hen inc <="1'; NM <= z1;

Stale | | [EseL.push, pop, else inc <
b ond
-

when a2 => NS <= a3; outputs_to_datapath <= (others =>'0");
f o S

FSM_stack . then i 1'; NM <= z2;
— & Customizable part ;
7777777 1 3 if; a,
"""" g when a3 => NS <= a3; outputs_to_d:
: H I3 if stack_pointer > 0 then dec <:
outputs |,) else dec <='0';
! process (current module,current_state,inputs) i end if; a,
! begin - the second process for the block CC | when others => null;
! case M stack(stack_pointer) is i end case;
-- state transitions within medules when z1=>

end process; > hierarchical return

i
i

1 -~ repeating for all modules i case FSM_stack(stack_pointer) is
i

i !

CREDES Workshop, Tallinn University of CREDES Workshop, Tallinn University of
Technology - 23 September 2010 45 Technology - 23 September 2010 46

Mples

alg l‘

aly
ﬂ (2;) take
——
@ -
2 o

a

(25) UNLOAD|

| T 2

.1
a %

(2,) deliver i WAIT MOVE LEFT

-

.
0

:
s BT

3.Synthesis of HFSM circuits from the customized
HDL templates using commercially available

computer-aided design tools, such as ISE of Xilinx. . __d
2
‘ VoY | [End]334 [End] a4, End), End | 2%
CREDES Workshop, Tallinn University of CREDES Workshop, Tallinn University of
Technology - 23 September 2010 47 Technology - 23 September 2010 48

Zs Begin fa%

——Parallelism

1)

HFSMs

|

pop1 push1

_|..| Combinational |
XL Circuit | | I

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

imunicating AFSk

10/8/2010

Acknowledgement (module termination/suspend)

J DP stat [
‘B @ l
'L &|) clock
| Combinational Memory (FSM s
Circuit (CC) register- Rg) [P o
clock. 1]

reset

DP operations

Garage
contfo‘

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

Aset of HGSs

—
-
Open/
close
gates

Tremrnunicating HESMs
. Ating Bk

HFSM,

HFSM,

@ Sorting
data for

Technology - 23 September 2010

HFSM,
OO tho
° third tree
Sortinfg data for the Sorting data for the @
irst tree second tree
Output circuit built from
Rec urSNe multiplexers and comparatorsfc__
data @ Sorted data
Sort'md CREDES Workshop, Tallinn University of 51

SR,

foecsacTock, reset) -- the first process describes
begin -- just FSM_stack
if reset='l' then stack pointer<=0; -- initializing
FSM_stack (stack_pointer)<= -- initial module state a0;
elsif rising edge(clock) then
if push='1' then
if stack pointer-stack size then -- error handling
else stack_pointer<-stack pointersl;
FSM_stack (stack_pointer) <=NewR_S;
end if;
e1sif pop-'1' then stack_pointer<-stack_pointer-1;
end if;
end if;
end process;

states that influence
transitions just for
i ical returns

! next . = 7 Control: clock, |
inputs | Sstate | [- reset, push, pop;
Ll laa ;

Structure: [Combin

ational| | Register—FSM | [_ .=~ = ¢4--—- =
TR circuit (CC|
i FSM_stack
outputs keeps only
rrrrrrr states for
NN AR N _._, returns from
process (current_state, inputs) | modules
begin - the second process for the block CC | @9
case FSM_stack(stack_pointer) is)

-- description of state transitions i ‘(\Q
end process;

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

1. HFSM with
implicit modules

2. Optimization of

hierarchical cal
and returns

3. Using embedded

memory blocks

Result:
Hierarchy was
implemented in
hardware more
efficiently than
in software

Is

52

P hatis important
1. Any module can be reused
2. Recursion is supported

ZD
(Z¢) test

3. The proposed
specification is
synthesizable
4. Verifying and debugging
are easier
5. Using proposed optimization
techniques makes it possible
hierarchical calls/returns to be
accelerated compared with
similar calls/returns in software.

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

53

7. Practical Applications and Examples
8. Experiments and the Results
9. Conclusion

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

Use &
Comparison

54

fiplete Simple Exa

unsigned int RGCD(unsigned int A,
unsigned int B)
{ if(B>A)return RGCD(B,A);
else if (B<=0) return A;
else return RGCD(B,A%B);

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 55

10/8/2010

mpleie Simple Exar
process(clock,reset)
begin -- N_S is the next state
if reset="1" then
stack_pointer<=0; FSM_stack(stack_pointer)<=a0;
M_stack(stack_pointer)<=z0;
elsif rising_edge(clock) then
if push="1' then
if stack_pointer=stack_size then
- error handling
else stack_pointer<=stack_pointer+1;
FSM_stack(stack_pointer+1)<=a0;
FSM_stack(stack pointer)<=N_S;
M_stack(stack_pointer+1)<=NM;
d i NM is th d

<2

N_S;

end if; Ordinary transition
end if;
end process;

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 56

fiplete Simple Exa

when z0 => B
case FSM_stack(stack_pointer) is " e

when a0 => BoA .

-- describing state transitions from a, B=4%8B
when a1 => B0

-- describing state transitions from a,
-- and operations in the state a,, etc.

when a5 => N_S <= a5;
if stack_pointer>0 then pop<="1"; a“
else pop<='0';

end if; 5
when others=>null; %

a,
end case; A<B
when z1 =>
-- describing transitions and operations
-- for all states of the module z,

A=B

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 57

Hierarchical calls
b) Begin
al 01110010 0
0 1 0000 discoveringa matrix z
0 0 0010 column Cpnin, Which
0 1 0001 has the minimal number -
0 1 1001 N of ones (min_col) min_col
0 0 1000 Res. ve
7 04490041 ‘@ S
1 0 0-0-1-0
0 0 0011 End
0 1 0100 |— No
] @ row Rppax, with the
step value “1” in the column Cpq,
which has the maximum number
1010 N'pmax of ones (max_row)
0 1000
0 0000 remove the row Rpzcand all the
0 1001 columns, which have values “1”
0 1101 inthe Rpnay (set_masks)
0 0100
0 1001 (Resw |
0 0001
17 1010
step2
Hierarchical recursive call
CREDES Workshop, Tallinn University of
Technology - 23 September 2010 58

Zy qao Setting “no result”

Applying reduction
rules allowing to
simplify the problem

a Constraint: no branching is required if it cannot

improve any previously recorded result

!

Hierarchical calls
s the resul
found?

Is this
result the
best?

“Branchin,
is required?

Hierarchical recursive call

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 59

modules

module call

, — ag — states of 1
(hierarchical) finite ~ b)
state machine

‘V1’YA12'"1‘ ‘ Yo ‘ | Yo:¥s |34|

l I I
MOd
uj,
e

alqo rithm

CREDES Workshop, Tallinn University of

Technology - 23 September 2010 60

10

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 61

10/8/2010

Number Number of clock cycles required for sorting
ofdat 1 Sequential | Parallel (N=2) | Parallel (N~4)
4019 16075 5622 4047
3985 15939 5553 4013
3945 15779 5541 3969
3969 15875 5531 4001
3979 15915 5587 4013
3963 15851 5540 3989
4010 16039 5622 4037
3977 15907 5553 4013
4048 16191 5706 4072
3988 15951 5555 4014
Implementation: NEXYS-2 prototyping board with FPGA of Spartan-3e family
CREDES Workshop, Tallinn University of
Technology - 23 September 2010 62

®it) | S [Fuw B | S [Fuu| B
Sequential | 12 100 137 1175 | 107 | 13
Parallel 12 275 |20 - - -
(N=2)

5]
Parallel 1 ;: 20 - - -
Ereang

N=4)

S n er of FPGA slices.
F he maximum achievable clock frequency.
B — the number of block RAMs

Implementation: NEXYS-2 prototyping board with FPGA of Spartan-3e family

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 63

xarple{prioviy

V3 Iv2 IV1

request instruction
with the highest priority

PB

E Build il X
IR E> il B
remove a particular
instruction
1. Building the tree with the characteristics considered above.
2. Extracting data in accordance with their priorities.
3. Rebuilding the tree (removing the nodes that are not longer

required).

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 64

e = G LT £

i (prioTiy

4 Module M1 11 Module M4

&

ee_rac” e suoeeeoce
ode”

tree_ode" add_nodeftres_node" node, int vaius) Void exract_rom_ires{ree_nade"d: node, it vaue) bvace o k)
i node— 0) { ree_node “temp_node; { e = e oot
{ node =new tree_node; (node 1=0) I vesitying if node exists eise iflvais < node-va
node vk 1t (value > nodevakie) I iraversing the ght sub-ree resesd =t smee«nm subnose, vaug);
extrac_from _recinoce-» vahuc <

),
e fue < nadevshe) | oversng e ef sub e e euia s ete T, SUana, Y2,
e o s) g

1
eise I (valie = node-=va

g)
nadeso | | et coute (ot =)88 possr =)}

11 i case the node has 10 be Geked

e ok <ncce (
o nose(tode tyate)
" aete ook
u lraversmgmelensulmee peiods
1
) e sr=sdd_nods{nade >rval); st
i raversing the rgnt sub-ree 11 changing painters for the ight node:
p_node = nader;
i i {node->]) 1= 0) ‘struct tree_node
1/ Modsie M2 b _suntrestem oo note s, | { int valu; I node vaue finsirction code)
o [= Wtc; i counter for repeated vakies
Yol reEa0niineenggs "ods) nade-s1 = temp_node->r, st weeJode 1 pointer to the left
{7 finodel=d) " I/ the node exists node-> = temp_node->%
{yessortirode sl 1/ sor et su-res noe svalue = temp_ode vale; g
1 G55y vaue st any rerncal 1062 = femp_nodenc, I subiree
eesofrode->); I nom scrt righ sub-res deits tomp_node, 1f clher s 1 reguired
+ i
i sise
{1 changm pantes fortheft e
= noge-s;
4/ Mo M3
Vois xtast_most_prety(res_node” node) st
i finode =0} node->vaue = femp_nodevakie;
1 wnie (nodesr=0) odes = temp_ ncdenc. A
node = node->, delete temp_node; e\\ 8
150 nodie >vekue ! 06
1 1 W G**
1 1 .
A\

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 65

Rebuilding
sub-trees

Building the tree

Removing unneeded
data from the tree

Extracting data
from the tree

Extracting data
with the highest

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 66

10/8/2010

! Conclusion T e -

1. The proposed technique makes easier to convert software
functions to hardware implementations because the
mechanisms in software and in hardware become relatively

similar. In particular, recursion is supported. Th&m @u
2. Modular specifications simplify such useful feature as design y
reuse and support the strategy divide and conquer.

3. Modular algorithms make easier verification and debugging. for y@ur att@ﬂti@n !

4. All the proposed specifications are synthesizable and our
experience has shown that for the considered cases the
resulting circuits are faster than the equivalent processor-
based implementations. This is because using the proposed
optimization technique permits hierarchical calls/returns to be
accelerated compared with similar calls/returns in software.

CREDES Workshop, Tallinn University of CREDES Workshop, Tallinn University of
Technology - 23 September 2010 67 Technology - 23 September 2010 68

12

