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Departments:
Biology;
Ceramics and Glass Engineering; 
Chemistry;
Civil engineering; 
Communication and the art;
Didactics and Educational Technology;
Economics, Management and Industrial 
Engineering;
Education;
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Education;
Electronics, Telecommunications and 
informatics;
Environment and Planning; 
Geoscience
Languages and Cultures; 
Mathematics;
Mechanics;
Physics;
Social, Legal and Political Sciences 
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The DETIUA 
department
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Teaching staff: 98
Staff with Ph.D.: 83
Professors: 12
Associate Professors: 17
Assistant Professors 30
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Assistant Professors 30
Invited Assistant Professors 20

Students:
- MIECT: 382
- MIEET: 797
- ERASMUS students: 20    (Belgium, Czech Republic,
England, Hungary, Germany, Italy, Netherlands, Poland, Serbia, Spain, etc.)

Undergraduate Programs:
Technology  and Information Systems

Undergraduate and Master Programs:
Computer Engineering and Telematics;
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Computer Engineering and Telematics;
Electronic Engineering and Telecommunications

Master Programs:
Industrial Automation Engineering;
Genomics and Bioinformatics

Master of Science in Information Networking (MSIN) with 
Carnegie Melon University 

Doctoral Programs:
Computer Engineering;
Electrical Engineering;
Dual Degree in Electrical and Computer Engineering 
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g p g g
with Carnegie Melon University;
Telecommunications;
Computer Science

Master Programs with other countries:
Cape Verde;
Mozambique
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Instituto de Engenharia Electrónica e Telemática de Aveiro

Institute of Electronic Engineering and Telematics:

http://www.ieeta.pt

http://www.ieeta.pt/~pjf/aval/ieeta.pdf
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Instituto de Telecomunicações

Institute of Telecommunications:

http://www.it.pt
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Background and experience of DETIUA

CAMBADA RoboCup –
World Champion, 2008
http://www.ieeta.pt/atri/cambada/

ICARO EcoShell Marathon
http://icaro.ua.pt/

http://www.ist-daidalos.org/
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Dynamic QoS 
management

Industrial Surveillance http://www.ieeta.pt/lse/ftt/

NGN
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Research Area: Computational systems with polymorphic
(reconfigurable) architectures based on enhanced components
and model-oriented methodologies targeted to acceleration of
application-specific algorithms, embedded applications,
robotics, and control
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HiPEAC – FP7 European Network of Excellence on High 
Performance and Embedded Architecture and Compilation

Use of HP Mobile Technology to Enhance Teaching 
Reconfigurable Systems – Hewlett Packard grant-award
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53rd IEEE International Midwest Symposium on Circuits and Systems Seattle, 
Washington
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FPT’2010 BEC’2010

IEEE International Conference on Microelectronics

The laboratory is composed of three research groups:

Reconfigurable systems
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Embedded systems and application-specific electronics

Robotics and control
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Any module can be reused

Any module can be refined
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OO Synthesize 
Hardware 
Circuits
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Functionality:

Any incoming car is stopped in
front of the entrance gate where
there is an eventual queue in
case if there are no free parking
slots in the garage.
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A driver leaves the car and then
the system is responsible for
further steps of parking.

Requests for retrieving cars from
the garage are formed by car
owners. The selected car drives
automatically to the exit gate and
then is parked in a place where
the car owner waits.
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Priority buffer (PB)

Managing parking 
slots and priorities

Central sub-system
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a)
b) c)

d)

e) f) h) i)

Car sub-systems
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Gate control

Processing requests
- from arriving (new) cars

- from exiting cars
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1) 17
2) 6
3) 18
4) 9
5) 5
6) 21
7) …

17root of a binary tree

6 18

95 21

right node of
the node 18, because
21 > 17 and 21 > 18
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eliminar

9

right node of
the node 6, because

9 < 17 and 9 > 6

5

left node of
the node 6, because

5 < 17 and 5 < 6

21

1. Executing operations;
2. Selecting bottom (left

or right) node

Module
Module 

execution

Recursive Module 
execution 

Recursive Module
execution 
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1. Executing operations;
2. Selecting bottom (left

or right) node

1. Executing operations;
2. Selecting bottom (left

or right) node

Module Module
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More clear specification

Faster implementation
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ROM RAM I/O

master

slave slave slave
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Combinatorial Search Problems Solver 

Variable Fixedf
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Input/Output

Dedicated FPGA
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Variable 
Instruction 

Set Co-
processor

Fixed 
Instruction 

Set 
Processor

Interface

Customization Circuits

Customization of 
microprograms for 

instructions

Reloading the 
program
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Begin

Decoder of the 
instructions

zi
1

μ1

zi
2

μ2

zi
q1

μq

zi
q1+1

Communication between the processor and
the co-processor is established as follows:

• When the program of the fixed
instruction-set processor requires just
application-independent or shared
(common) application-specific instructions, it
is executed entirely in the processor;

• As soon as an application specific (not
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μ1 μ2 μq

End
Virtual table

instruction micro-program

• As soon as an application-specific (not
common) instruction is required, the
processor sends the instruction code to the
co-processor. The latter activates a micro-
program based on given association in the
virtual table. As soon as the results are
ready they are sent back to the processor.

Stack memory

next state

next module 
(instruction)

Combinational Circuit
MB1 MB2 MBK
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1
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current state

current 
module

External memory (ROM)

Reconfiguration 
Controller

1. Reload the RFSM memory 
(variation of instructions);

2. Reload the virtual table 
(establishing a relationship 
between some names known
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between some names known 
to the processor and micro-
programs implemented in the 
RFSM);

3. Reload program for the 
processor. 



10/8/2010

7

CREDES Workshop, Tallinn University of 
Technology - 23 September 2010 37 CREDES Workshop, Tallinn University of 

Technology - 23 September 2010 38

Z1

BeginBegin

z1

0

Z0

Begin

x1
0

1

y1,y2,z2

Z2
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Modularity 
and hierarchy

End

X5

End

z2

0

1y 3

End, y5

y1,y4,z2

Extracting Extracting 
data from data from 
the treethe tree

Begin

X5

z1

0

Z0

Begin

X

X2

X3

1

0

0

1

1 y8

Z1

Begin

x1

Z2

1

0
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End

z2

1 X4

End (y5)

0

1

y1,y4,z1y1,y2,z1

y6 y7

y9

y3

End, y5

y1,y2,z2

y1,y4,z2

1

Reusable part
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Customizable part

1.Marking the given HGSs with labels that will be
considered as the HFSM states.

2.Customizing the proposed HDL templates for the
combinational circuit
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combinational circuit.

3.Synthesis of HFSM circuits from the customized
VHDL templates using commercially available
computer-aided design tools, such as ISE of Xilinx.
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Extracting Extracting 
data from data from 
the treethe treeBegin

X

z1

a0

a1

0

Z0 Begin

X2

X3

1

0

0

1

1

a0

a1
y8

Z1

Begin

x1

Z2

a0

1

0
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X5

End

z2 a2

a3

0

1
X4

End (y5)

0

1 a1

a6
a2

a3

a7

y8

a4

a5

y1,y4,z1y1,y2,z1

y6 y7

y9

y3

End, y5

y1,y2,z2

y1,y4,z2

a1

a2

a3

a4

1

1.Marking the given HGSs with labels that will be
considered as the HFSM states.

2.Customizing the proposed HDL templates for the
combinational circuit
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combinational circuit.

3.Synthesis of HFSM circuits from the customized
VHDL templates using commercially available
computer-aided design tools, such as ISE of Xilinx.
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Customizable part

Customizable partprocess (FSM_stack,M_stack) – sensitivity list includes also inputs from datapath
begin
inc <= '0'; dec <= '0';

case M_stack(stack_pointer is
when z0 =>

case FSM_stack(stack_pointer is       
when a0 => outputs_to_datapath <= (others => '0');  

NS <= a1;
when a1 => outputs_to_datapath <= (others => '0'); 

if x5='0' then NS <= a1;  
else NS <= a2;

end if;
if return_flag = '0' then inc <= '1'; NM <= z1;

else inc <= '0';

Begin

z1

a0

a1

Z0

hierarchical call
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else inc <= 0 ;
end if;

when a2 => NS <= a3; outputs_to_datapath <= (others => '0');
if return_flag = '0' then inc <= '1'; NM <= z2;

else inc <= '0';
end if;

when a3 => NS <= a3; outputs_to_datapath <= (others => '0');
if stack_pointer > 0 then dec <= '1';

else dec <= '0';
end if;

when others => null;    
end case;

when z1 =>   
case FSM_stack(stack_pointer) is       

-- . . . . . . . . . . . . . . . . .

X5

End

z2 a2

a3

0

1

hierarchical return

1.Marking the given HGSs with labels that will be
considered as the HFSM states.

2.Customizing the proposed HDL templates for the
combinational circuit
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combinational circuit.

3.Synthesis of HFSM circuits from the customized
HDL templates using commercially available
computer-aided design tools, such as ISE of Xilinx.
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End
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RIGHT SENSOR
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(Z5) UNLOAD

LEFT SENSOR
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End FULL

1

0

End

Begin

X1

0

1

y1,y2

Z3

X2

0

y1,y2 End

1

Begin

End

Z4 Begin

End
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Combinational 
Circuit

clockx1

xL

y1

yN

Combinational 
Circuit (CC)

Memory (FSM 
register - Rg)

Sout

PB

Open/
close 
gates

Acknowledgement (module termination/suspend)
A set of HGSs

reset

AB
C

DP states

clock

clock
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Modules activation
DP operations

Top-level manager

24

3012

25 40

HFSM1 17

8 18

10 20

HFSM2 35

61
1

50

HFSM3

Sorting 
data for 

the

HFSMN
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25

19

40
11

Sorting data for the
first tree

9 16

Sorting data for the
second tree

15

217

the
third tree

Output circuit built from 
multiplexers and comparators

Sorted data

1. HFSM with 
implicit modules

Control: clock

process(clock,reset) -- the first process describes
begin -- just FSM_stack
if reset='1' then  stack_pointer<=0; -- initializing

FSM_stack(stack_pointer)<= -- initial module state a0; 
elsif rising_edge(clock) then 

if push='1' then 
if stack_pointer=stack_size then -- error handling 
else    stack_pointer<=stack_pointer+1;

FSM_stack(stack_pointer)<=NewR_S;
end if;

elsif pop='1' then stack_pointer<=stack_pointer-1;
end if;

end if;
end process;

states that influence
transitions just for

hierarchical returns

2. Optimization of 
hierarchical calls 
and returns

3. Using embedded 
memory blocks
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FSM_stack
keeps only
states for

returns from
modules

Register – FSM
memory FSM_stack

Combinational
circuit (CC)

current
state

next
state

Control: clock,
reset, push, pop

process (current_state,inputs)
begin -- the second process for the block CC

case FSM_stack(stack_pointer) is
-- description of state transitions

end process; 

inputs

outputs
decoding

NewR_S

Structure:

memory blocks

Result:
Hierarchy was
implemented in
hardware more
efficiently than
in software

Z1, Z2

Begin

Z0

(Z6) test

Begin

RIGHT SENSOR

MOVE RIGHT

0

1

Z2

(Z5) UNLOAD

1. Any module can be reused

2. Recursion is supported

3. The proposed 
specification is 
synthesizable

4 Verifying and debugging

CREDES Workshop, Tallinn University of 
Technology - 23 September 2010 53

1, 2

OFF

End

0

1

LEFT SENSOR

MOVE LEFT

0

1

WAIT

FULL

1

0

End

4. Verifying and debugging 
are easier

5. Using proposed optimization 
techniques makes it possible 
hierarchical calls/returns to be 
accelerated compared with 
similar calls/returns in software.
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Begin

result

z0

A=B,
B=A, z0

B=A%BB,A

B

B>A

B≤A

B=0

B≠0

A B

z1

a0

a1
a2 a3

a4

unsigned int RGCD(unsigned int A,
unsigned int B)
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End
A=B,z0

Begin

A,B
A≥B

A<B

A=A-B

B=AEnd

z1

a5

a1

a2

a0

{   if (B > A) return RGCD(B,A);
else if (B<=0) return A;
else return RGCD(B,A%B);

}

Begin

result

z0

A=B,
B=A, z0

B=A%BB,A

B

B>A

B≤A

B=0

B≠0

A B

z1

a0

a1
a2 a3

a4

process(clock,reset)
begin         -- N_S is the next state
if reset='1' then  

stack_pointer<=0; FSM_stack(stack_pointer)<=a0;
M_stack(stack_pointer)<=z0; 

elsif rising_edge(clock) then 
if push='1' then 

if stack_pointer=stack_size then
error handling

Hierarchical call
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End
A=B,z0

Begin

A,B
A≥B

A<B

A=A-B

B=AEnd

z1

a5

a1

a2

a0

-- error handling 
else stack_pointer<=stack_pointer+1;

FSM_stack(stack_pointer+1)<=a0;
FSM_stack(stack_pointer)<=N_S;
M_stack(stack_pointer+1)<=NM;

end if;  -- NM is the next module
elsif pop='1' then 

stack_pointer<=stack_pointer-1;
else  FSM_stack(stack_pointer)<=N_S;
end if;

end if;
end process;

Hierarchical return

Ordinary transition

Begin

result

z0

A=B,
B=A, z0

B=A%BB,A

B

B>A

B≤A

B=0

B≠0

A B

z1

a0

a1
a2 a3

a4

when z0 =>
case FSM_stack(stack_pointer) is
when a0 => 
-- describing state transitions from a0
when a1 =>  
-- describing state transitions from a1
-- and operations in the state a1, etc.
-- . . . . . . . . . . 
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End
A=B,z0

Begin

A,B
A≥B

A<B

A=A-B

B=AEnd

z1

a5

a1

a2

a0

when a5 => N_S <= a5;
if stack_pointer>0 then pop<='1';
else pop<='0';

end if;
when others=>null;
end case;
when z1 =>
-- describing transitions and operations 
-- for all states of the module z1

Hierarchical calls
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Hierarchical recursive call

Begin

Applying reduction
rules allowing to

simplify the problem

0

Z0

Is the result
found?

Setting “no result”

Constraint: no branching is required if it cannot
improve any previously recorded result 

Z1

a0

a2

a4

Hierarchical calls
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Applying selection
rules

Z0                 

1

Branching
is required?

Recording the result

End

1

0
Is this

result the
best?

10

Z2

a1

a3

a5

Hierarchical recursive call

Begin

x6

y1,y2,zm
2

1

0

a0

a1

Begin

x3

xx

10

11 0 0

a0

Begin

0

a0

a1zm
1

x5

1

zm
1

zm
2 modules

a0 – a6 – states of
(hierarchical) finite

state machine

module calla)

b) c)
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x7

y3

y1,y4,zm
2

End, y5

1

0

a2

a3

a4

x1x2

x4

End, y10

1 0

y1,y2,zm
1 a1a4

a5a2a3

a6

y7,y8y6,y8y1,y4,zm
1 y9

zm
2

End

a2

a3
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X2

X4

Begina0

a1

1

0
0

x6 x7

10

a3 a1

0

0

1
a2 a4

y9

x7

0

1

x6

y2

0

1
a7

y3 a9
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a3 a5
1 0

X3
0

1

y6,y8 y2

y4
y7,y8

y10 a6

xx2
1

y4a8

End
0

a11

xx1
1

0

y1,y5 a10

X1
0

1
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Implementation: NEXYS-2 prototyping board with FPGA of Spartan-3e family
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S – the number of FPGA slices.
Fmax – the maximum achievable clock frequency.
B – the number of block RAMs

Implementation: NEXYS-2 prototyping board with FPGA of Spartan-3e family

request instruction
with the highest priority

l

P PB
In

st
r Build 

the 
tree

Extract 
data

Rebuild 
the tree

IV1IV2IV3
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remove a particular
instruction

1. Building the tree with the characteristics considered above.
2. Extracting data in accordance with their priorities.
3. Rebuilding the tree (removing the nodes that are not longer 

required).
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Building the tree

Removing unneeded

Rebuilding 
sub-trees
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Extracting data 
from the tree

Extracting data 
with the highest 

priority

Removing unneeded 
data from the tree Tree-node data 

structure
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1. The proposed technique makes easier to convert software 
functions to hardware implementations because the 
mechanisms in software and in hardware become relatively 
similar. In particular, recursion is supported.

2. Modular specifications simplify such useful feature as design 
reuse and support the strategy divide and conquer.
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3. Modular algorithms make easier verification and debugging.

4. All the proposed specifications are synthesizable and our 
experience has shown that for the considered cases the 
resulting circuits are faster than the equivalent processor-
based implementations. This is because using the proposed 
optimization technique permits hierarchical calls/returns to be 
accelerated compared with similar calls/returns in software.
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