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Teaching staff: 98
Staff with Ph.D.: 83
department Professors: 12

Associate Professors: 17

Assistant Professors 30

Invited Assistant Professors 20

Students:

- MIECT: 382

- MIEET: 797

- ERASMUS students: 20 (Belgium, Czech Republic,

England, Hungary, Germany, ltaly, Netherlands, Poland, Serbia, Spain, etc.)
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Undergraduate Programs: Doctoral Programs:
Technology and Information Systems Computer Engineering;
Undergraduate and Master Programs: Electrical Engineering;
Computer Engineering and Telematics; Dual Degree in Electrical and Computer Engineering
Electronic Engineering and Telecommunications with Carnegie Melon University;
Master Programs: Telecommunications;
Industrial Automation Engineering; Computer SC|enlce .
Genomics and Bioinformatics Master Programs with other countries:
Master of Science in Information Networking (MSIN) with Cape Verde;
Carnegie Melon University Mozambique
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Instituto de Engenharia Electrénica e Telematica de Aveiro
Institute of Electronic Engineering and Telematics: Instituto de Telecomunicagdes
http://www.ieeta.pt Institute of Telecommunications:
http://www.ieeta.pt/~pjf/aval/ieeta.pdf http://www.it.pt
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Embedded Systems, Computing and Control

Research Area: Computational systems with polymorphic
(reconfigurable) architectures based on enhanced components
and model-oriented methodologies targeted to acceleration of

application-specific  algorithms, embedded applications,
robotics, and control
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The laboratory is composed of three research groups:

Reconfigurable systems

Embedded systems and application-specific electronics

\Robotics and control
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Design of embedded systems and their components can be
hased on different methods, architectural solutions and
tools and we would like to consider one potential way that
combines the following technigques:

Meodular and Hierarchical Specifications;

Potentialities of Parallelism;

Synthesis of Hardware Circuits and their Optimization
hased on the model of a Hierarchical Finite State Machine
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Any module can be reused
Any module can be refined
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Examples of Practical
Applications
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Functionality:

Any incoming car is stopped in
front of the entrance gate where
there is an eventual queue in
case if there are no free parking
slots in the garage.

A driver leaves the car and then
the system is responsible for
further steps of parking.

Requests for retrieving cars from
the garage are formed by car
owners. The selected car drives
automatically to the exit gate and
then is parked in a place where
the car owner waits.
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I Central ;UT,__sy_séa T Car sub-systems
Managing parking
slots and priorities
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Potentialities of using
diiferent techniques for
describing algorithims,
such as recursive and

iterative techniques
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. right node of

1) 17 root of a binary tree the node 18, because
2) 6 left nog 21>17and 21> 18
3) 18 ¢ because 6 < 4,
4) 9
5) 5
6) 21
e (@)

left node of

the node 6, because
5<17and5<6

right node of
the node 6, because
9<17and9>6

right node pecause 18 > 17
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Module

] 1. Executing operations;
execution

2. Selecting bottom (left
or right) node

Recursive Module
execution

1. Executing operations;
2. Selecting bottom (left

or right) node or right) node
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Recursive Moduld
execution

1. Executing operations;
2. Selecting bottom (left

28

ub-tree does
not exist

i) Save cumentaddress,
2) Write an address of the leftnode;
3) Activate recursively the module

v

Save current address;
2) Write an address of the right nodé
3) activate recursively the module

End (restore the address of]|
the previous node)
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More clear specification

Faster implementation

Potentialities for
customization,
adaptation and

virtualization at the level

of hardware
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Auxiliary FPGA
for remote

Dedicated FPGA customization

Combinatorial Search Problems Solver
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Peripheral Controllers

Input/Output @
Variable Fixed
N Interface N
Instruction Instruction
Set Co- Set
processor Processor

Customization of
microprograms for
instructions

Customization Circuits

Reloading the’
program

Data for reloading the program and
customization of microprograms

S
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Communication between the processor and
the co-processor is established as follows:

Decoder of the * When the program of the fixed
instructions instruction-set  processor requires  just
1‘11 llzl ;ziq,Iz‘.,.‘ ————————— application-independent or shared

(common) application-specific instructions, it
is executed entirely in the processor;

* As soon as an application-specific (not
common) instruction is required, the
processor sends the instruction code to the
co-processor. The latter activates a micro-
program based on given association in the
End virtual table. As soon as the results are
ready they are sent back to the processor.

Virtual table
instruction

micro-program
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1
next state 1

next module !
(instruction) !

Stack memory

current
module,

current state,
—

Reconfiguration
Controller
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External memory (ROM)
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4. Hierarchical and Parallel Specifications

5. Hierarchical Finite State Machines (HFSM)

6. Synthesis of HFSM from Hierarchical and Parallel
Specifications Details

Practical Applications and Examples
Experiments and the Results
Conclusion
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Modularity
and hierarchy
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Extracting
data from
the tree
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| process (clock,resst) —— the first process for the blocks
| begin - M stack and FSM stack
if resst='1" then
-- setting to an initial state and initializing
elsif rising edge(clock) then
-- test for possible error
-- executing tramsitions of the follewing types
-— a) between states within the same module i
== b) between states that belong to different modules |
end if; :
| end procass;

§==m Reusable part

inputs

Bl new next | Control:clock,
Control: clock, reset, push,& W‘ \ l stale | resel, push, pop.
i 1Ll o

Combinational

Structure: circuit (CC) & Customizable part
,,,,,,, H <+
: )
3
outputs l &
i ; :
process (current_module,current_state,inputs) i
"begin - the second process for the block CC | THIS TEMPLATE
1" case m_stack(stack_pointer) 1s ; PROVIDES SUPPORT
-- state transitions within medules h
! -~ repeating for all modules i FOR RECURSION IN
: end process; i HARDWARE
CREDES Workshop, Tallinn University of
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yithesis:

1.Marking the given HGSs with labels that will be
considered as the HFSM states.

2.Customizing the proposed HDL templates for the
combinational circuit.

3.Synthesis of HFSM circuits from the customized
VHDL templates using commercially available
computer-aided design tools, such as ISE of Xilinx.
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Extracting
data from
the tree

2.Customizing the proposed HDL templates for the
combinational circuit.

3.Synthesis of HFSM circuits from the customized
VHDL templates using commercially available
computer-aided design tools, such as ISE of Xilinx.
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fple:

-- setting to an initial state and initializing H when z0 =>
elsif rising edge(elock) then
- test for possible error

> process (FSM_stack,M_stack) — sensitivity list includes also inputs from datapath Customizable part
| process (clock,resst) —— the first process for the blocks H begin
| begin -- M stack and FSM stack H inc <='0'; dec <=0;
! if reset='1l" then H case M_stack(stack_pointer is

case FSM_stack(stack_pointeris
when a0 => outputs_to_datapath <= (others =>'0'); |

-- executing transiticns of the feollewing types NS <= aft; I 4

: -- a) between states within the same module when a1 => outputs_to_datapath <= (others => '0');

! -- b) between states that beleng to different modules if x5='0" then NS <=a1;

i end if; 5 else NS <= a2; ay

inputs : . end if; S

| i | Contral:clock, if return_fla hen inc <="1'; NM <= z1;

Stale | | [EseL.push, pop, else inc <
b ond
-

when a2 => NS <= a3; outputs_to_datapath <= (others =>'0");
f o S

FSM_stack . then i 1'; NM <= z2;
— & Customizable part ;
7777777 1 3 if; a,
"""" g when a3 => NS <= a3; outputs_to_d:
: H I3 if stack_pointer > 0 then dec <:
outputs |, ) else dec <='0';
! process (current module,current_state,inputs) i end if; a,
! begin - the second process for the block CC | when others => null;
! case M stack(stack_pointer) is i end case;
-- state transitions within medules when z1=>

end process; > hierarchical return

i
i

1 -~ repeating for all modules i case FSM_stack(stack_pointer) is
i

i !
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3.Synthesis of HFSM circuits from the customized
HDL templates using commercially available

computer-aided design tools, such as ISE of Xilinx. . __d
2
‘ VoY | [ End ]334 [ End ] a4, End ), End | 2%
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——Parallelism

1)

HFSMs

|

pop1 push1

_|..| Combinational |
XL Circuit | | I
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Acknowledgement (module termination/suspend)

J DP stat [
‘B @ l
'L &| ) clock
| Combinational Memory (FSM s
Circuit (CC) register- Rg) [P o
clock. 1 ]

reset

DP operations

Garage
contfo‘
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Aset of HGSs

—
-
Open/
close
gates

Tremrnunicating HESMs
. Ating Bk

HFSM,

HFSM,

@ Sorting
data for
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HFSM,
OO tho
° third tree
Sortinfg data for the Sorting data for the @
irst tree second tree
Output circuit built from
Rec urSNe multiplexers and comparatorsfc__
data @ Sorted data
Sort'md CREDES Workshop, Tallinn University of 51

SR,

foecsacTock, reset) -- the first process describes
begin -- just FSM_stack
if reset='l' then stack pointer<=0; -- initializing
FSM_stack (stack_pointer)<= -- initial module state a0;
elsif rising edge(clock) then
if push='1' then
if stack pointer-stack size then -- error handling
else  stack_pointer<-stack pointersl;
FSM_stack (stack_pointer) <=NewR_S;
end if;
e1sif pop-'1' then stack_pointer<-stack_pointer-1;
end if;
end if;
end process;

states that influence
transitions just for
i ical returns

! next . = 7 Control: clock, |
inputs | Sstate | [ - reset, push, pop;
Ll laa ;

Structure: [Combin

ational| | Register—FSM | [_ .=~ = ¢4--—- =
TR circuit (CC|
i FSM_stack
outputs keeps only
rrrrrrr states for
NN AR N _._, returns from
process (current_state, inputs) | modules
begin - the second process for the block CC | @9
case FSM_stack(stack_pointer) is )

-- description of state transitions i ‘(\Q
end process;
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1. HFSM with
implicit modules

2. Optimization of

hierarchical cal
and returns

3. Using embedded

memory blocks

Result:
Hierarchy was
implemented in
hardware more
efficiently than
in software

Is

52

P hatis important
1. Any module can be reused
2. Recursion is supported

ZD
(Z¢) test

3. The proposed
specification is
synthesizable
4. Verifying and debugging
are easier
5. Using proposed optimization
techniques makes it possible
hierarchical calls/returns to be
accelerated compared with
similar calls/returns in software.

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

53

7. Practical Applications and Examples
8. Experiments and the Results
9. Conclusion
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fiplete Simple Exa

unsigned int RGCD(unsigned int A,
unsigned int B)
{ if(B>A)return RGCD(B,A);
else if (B<=0) return A;
else return RGCD(B,A%B);
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mpleie Simple Exar
process(clock,reset)
begin -- N_S is the next state
if reset="1" then
stack_pointer<=0; FSM_stack(stack_pointer)<=a0;
M_stack(stack_pointer)<=z0;
elsif rising_edge(clock) then
if push="1' then
if stack_pointer=stack_size then
- error handling
else stack_pointer<=stack_pointer+1;
FSM_stack(stack_pointer+1)<=a0;
FSM_stack(stack pointer)<=N_S;
M_stack(stack_pointer+1)<=NM;
d i NM is th d

<2

N_S;

end if; Ordinary transition
end if;
end process;
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when z0 => B
case FSM_stack(stack_pointer) is " e

when a0 => BoA .

-- describing state transitions from a, B=4%8B
when a1 => B0

-- describing state transitions from a,
-- and operations in the state a,, etc.

when a5 => N_S <= a5;
if stack_pointer>0 then pop<="1"; a“
else pop<='0';

end if; 5
when others=>null; %

a,
end case; A<B
when z1 =>
-- describing transitions and operations
-- for all states of the module z,

A=B
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Hierarchical calls
b) Begin
al 01110010 0
0 1 0000 discoveringa matrix z
0 0 0010 column Cpnin, Which
0 1 0001 has the minimal number -
0 1 1001 N of ones (min_col) min_col
0 0 1000 Res.  ve
7 04490041 ‘@ S
1 0 0-0-1-0
0 0 0011 End
0 1 0100 |— No
] @ row Rppax, with the
step value “1” in the column Cpq,
which has the maximum number
1010 N'pmax of ones (max_row)
0 1000
0 0000 remove the row Rpzcand all the
0 1001 columns, which have values “1”
0 1101 inthe Rpnay (set_masks)
0 0100
0 1001 (Resw |
0 0001
17 1010
step2
Hierarchical recursive call
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Zy qao Setting “no result”

Applying reduction
rules allowing to
simplify the problem

a Constraint: no branching is required if it cannot

improve any previously recorded result

!

Hierarchical calls
s the resul
found?

Is this
result the
best?

“Branchin,
is required?

Hierarchical recursive call
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modules

module call

, — ag — states of 1
(hierarchical) finite ~ b)
state machine

‘V1’YA12'"1‘ ‘ Yo ‘ | Yo:¥s |34|

l I I
MOd
uj,
e

alqo rithm
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Number Number of clock cycles required for sorting
ofdat 1 Sequential | Parallel (N=2) | Parallel (N~4)
4019 16075 5622 4047
3985 15939 5553 4013
3945 15779 5541 3969
3969 15875 5531 4001
3979 15915 5587 4013
3963 15851 5540 3989
4010 16039 5622 4037
3977 15907 5553 4013
4048 16191 5706 4072
3988 15951 5555 4014
Implementation: NEXYS-2 prototyping board with FPGA of Spartan-3e family
CREDES Workshop, Tallinn University of
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®it) | S [ Fuw B | S [ Fuu| B
Sequential | 12 100 137 1175 | 107 | 13
Parallel 12 275 |20 - - -
(N=2)

5]
Parallel 1 ;: 20 - - -
Ereang

N=4)

S n er of FPGA slices.
F he maximum achievable clock frequency.
B — the number of block RAMs

Implementation: NEXYS-2 prototyping board with FPGA of Spartan-3e family
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V3 Iv2 IV1

request instruction
with the highest priority

PB

E Build il X
IR E> il B
remove a particular
instruction
1. Building the tree with the characteristics considered above.
2. Extracting data in accordance with their priorities.
3. Rebuilding the tree (removing the nodes that are not longer

required).
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e = G LT £

i (prioTiy

4 Module M1 11 Module M4

&

ee_rac” e suoeeeoce
ode”

tree_ode" add_nodeftres_node" node, int vaius) Void exract_rom_ires{ree_nade"d: node, it vaue) bvace o k)
i node— 0) { ree_node “temp_node; { e = e oot
{ node =new tree_node;  (node 1=0) I vesitying if node exists eise iflvais < node-va
node vk 1t (value > nodevakie) I iraversing the ght sub-ree resesd =t smee«nm subnose, vaug);
extrac_from _recinoce-» vahuc <

),
e fue < nadevshe) | oversng e ef sub e e euia s ete T, SUana, Y2,
e o s ) g

1
eise I (valie = node-=va

g)
nadeso | | et coute ( ot = )88 possr =)}

11 i case the node has 10 be Geked

e ok <ncce (
o nose(tode tyate)
" aete ook
u lraversmgmelensulmee peiods
1
) e sr=sdd_nods{nade >rval); st
i raversing the rgnt sub-ree 11 changing painters for the ight node:
p_node = nader;
i i {node->]) 1= 0) ‘struct tree_node
1/ Modsie M2 b _suntrestem oo note s, | { int valu; I node vaue finsirction code)
o [ = Wtc; i counter for repeated vakies
Yol reEa0niineenggs "ods) nade-s1 = temp_node->r, st weeJode 1 pointer to the left
{7 finodel=d) " I/ the node exists node-> = temp_node->%
{yessortirode sl 1/ sor et su-res noe svalue = temp_ode vale; g
1 G55y vaue st any rerncal 1062 = femp_nodenc, I subiree
eesofrode->); I nom scrt righ sub-res deits tomp_node, 1f clher s 1 reguired
+ i
i sise
{1 changm pantes fortheft e
= noge-s;
4/ Mo M3
Vois xtast_most_prety(res_node” node) st
i finode =0} node->vaue = femp_nodevakie;
1 wnie (nodesr=0) odes = temp_ ncdenc. A
node = node->, delete temp_node; e\\ 8
150 nodie >vekue ! 06
1 1 W G**
1 1 .
A\
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Rebuilding
sub-trees

Building the tree

Removing unneeded
data from the tree

Extracting data
from the tree

Extracting data
with the highest
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! Conclusion T e -

1. The proposed technique makes easier to convert software
functions to hardware implementations because the
mechanisms in software and in hardware become relatively

similar. In particular, recursion is supported. Th&m @u
2. Modular specifications simplify such useful feature as design y
reuse and support the strategy divide and conquer.

3. Modular algorithms make easier verification and debugging. for y@ur att@ﬂti@n !

4. All the proposed specifications are synthesizable and our
experience has shown that for the considered cases the
resulting circuits are faster than the equivalent processor-
based implementations. This is because using the proposed
optimization technique permits hierarchical calls/returns to be
accelerated compared with similar calls/returns in software.
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