
10/8/2010

1

Synthesis of Circuits and
Systems from Hierarchical and

Parallel Specifications

Valery Sklyarov, Iouliia Skliarova

University of Aveiro, Portugal
DETIUA/IEETA

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 1

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 2

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 3

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 4

Departments:
Biology;
Ceramics and Glass Engineering;
Chemistry;
Civil engineering;
Communication and the art;
Didactics and Educational Technology;
Economics, Management and Industrial
Engineering;
Education;

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 55

Education;
Electronics, Telecommunications and
informatics;
Environment and Planning;
Geoscience
Languages and Cultures;
Mathematics;
Mechanics;
Physics;
Social, Legal and Political Sciences

DETIUA

at
io

ns

a
rt

m
en

t

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 6

Te
le

co
m

m
un

ic
In

st
itu

te

Electronics and Telematics
Institute (IEETA)

T
h

e
 d

e
p

a

10/8/2010

2

The DETIUA
department

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 7

Teaching staff: 98
Staff with Ph.D.: 83
Professors: 12
Associate Professors: 17
Assistant Professors 30

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 8

Assistant Professors 30
Invited Assistant Professors 20

Students:
- MIECT: 382
- MIEET: 797
- ERASMUS students: 20 (Belgium, Czech Republic,
England, Hungary, Germany, Italy, Netherlands, Poland, Serbia, Spain, etc.)

Undergraduate Programs:
Technology and Information Systems

Undergraduate and Master Programs:
Computer Engineering and Telematics;

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 9

Computer Engineering and Telematics;
Electronic Engineering and Telecommunications

Master Programs:
Industrial Automation Engineering;
Genomics and Bioinformatics

Master of Science in Information Networking (MSIN) with
Carnegie Melon University

Doctoral Programs:
Computer Engineering;
Electrical Engineering;
Dual Degree in Electrical and Computer Engineering

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 10

g p g g
with Carnegie Melon University;
Telecommunications;
Computer Science

Master Programs with other countries:
Cape Verde;
Mozambique

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 11

Instituto de Engenharia Electrónica e Telemática de Aveiro

Institute of Electronic Engineering and Telematics:

http://www.ieeta.pt

http://www.ieeta.pt/~pjf/aval/ieeta.pdf

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 12

Instituto de Telecomunicações

Institute of Telecommunications:

http://www.it.pt

10/8/2010

3

Background and experience of DETIUA

CAMBADA RoboCup –
World Champion, 2008
http://www.ieeta.pt/atri/cambada/

ICARO EcoShell Marathon
http://icaro.ua.pt/

http://www.ist-daidalos.org/

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 13

Dynamic QoS
management

Industrial Surveillance http://www.ieeta.pt/lse/ftt/

NGN

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 14

Research Area: Computational systems with polymorphic
(reconfigurable) architectures based on enhanced components
and model-oriented methodologies targeted to acceleration of
application-specific algorithms, embedded applications,
robotics, and control

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 15

HiPEAC – FP7 European Network of Excellence on High
Performance and Embedded Architecture and Compilation

Use of HP Mobile Technology to Enhance Teaching
Reconfigurable Systems – Hewlett Packard grant-award

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 16

53rd IEEE International Midwest Symposium on Circuits and Systems Seattle,
Washington

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 17

FPT’2010 BEC’2010

IEEE International Conference on Microelectronics

The laboratory is composed of three research groups:

Reconfigurable systems

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 18

Embedded systems and application-specific electronics

Robotics and control

10/8/2010

4

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 19

O
pe

ra
tio

ns
O

pe
ra

tio
ns

Any module can be reused

Any module can be refined

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 20

OO

O
pe

ra
tio

ns
O

pe
ra

tio
ns

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 21

OO Synthesize
Hardware
Circuits

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 22

Functionality:

Any incoming car is stopped in
front of the entrance gate where
there is an eventual queue in
case if there are no free parking
slots in the garage.

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 23

A driver leaves the car and then
the system is responsible for
further steps of parking.

Requests for retrieving cars from
the garage are formed by car
owners. The selected car drives
automatically to the exit gate and
then is parked in a place where
the car owner waits.

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 24

10/8/2010

5

Priority buffer (PB)

Managing parking
slots and priorities

Central sub-system

t/
ou

tp
ut

 c
ir

cu
it

s
S

S

a)
b) c)

d)

e) f) h) i)

Car sub-systems

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 25

Gate control

Processing requests
- from arriving (new) cars

- from exiting cars

In
te

rf
ac

e
an

d
in

pu

S
g)

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 26

1) 17
2) 6
3) 18
4) 9
5) 5
6) 21
7) …

17root of a binary tree

6 18

95 21

right node of
the node 18, because
21 > 17 and 21 > 18

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 27

eliminar

9

right node of
the node 6, because

9 < 17 and 9 > 6

5

left node of
the node 6, because

5 < 17 and 5 < 6

21

1. Executing operations;
2. Selecting bottom (left

or right) node

Module
Module

execution

Recursive Module
execution

Recursive Module
execution

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 28

1. Executing operations;
2. Selecting bottom (left

or right) node

1. Executing operations;
2. Selecting bottom (left

or right) node

Module Module

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 29

More clear specification

Faster implementation

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 30

10/8/2010

6

Variable Variable
instruction instruction

set set
processorprocessor

ro
ce

ss
or

pr
oc

es
so

r

Implementation
of variable

instructions

Fixed instruc-
tion set Vartiable ins-

truction set

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 31

ROM RAM I/O

master

slave slave slave

Pr Co

Bus

Combinatorial Search Problems Solver

Variable Fixedf

Peripheral Controllers
Input/Output

Dedicated FPGA

Auxiliary FPGA
for remote

customization

pr
og

ra
m

 a
nd

ro

pr
og

ra
m

s

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

32

Variable
Instruction

Set Co-
processor

Fixed
Instruction

Set
Processor

Interface

Customization Circuits

Customization of
microprograms for

instructions

Reloading the
program

D
at

a
fo

r
re

lo
ad

in
g

th
e

cu
st

om
iz

at
io

n
of

 m
ic

r

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 33

Begin

Decoder of the
instructions

zi
1

μ1

zi
2

μ2

zi
q1

μq

zi
q1+1

Communication between the processor and
the co-processor is established as follows:

• When the program of the fixed
instruction-set processor requires just
application-independent or shared
(common) application-specific instructions, it
is executed entirely in the processor;

• As soon as an application specific (not

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 34

μ1 μ2 μq

End
Virtual table

instruction micro-program

• As soon as an application-specific (not
common) instruction is required, the
processor sends the instruction code to the
co-processor. The latter activates a micro-
program based on given association in the
virtual table. As soon as the results are
ready they are sent back to the processor.

Stack memory

next state

next module
(instruction)

Combinational Circuit
MB1 MB2 MBK

in
st

ru
ct

io
n

1
in

st
ru

ct
io

n
2

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 35

current state

current
module

External memory (ROM)

Reconfiguration
Controller

1. Reload the RFSM memory
(variation of instructions);

2. Reload the virtual table
(establishing a relationship
between some names known

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 36

between some names known
to the processor and micro-
programs implemented in the
RFSM);

3. Reload program for the
processor.

10/8/2010

7

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 37 CREDES Workshop, Tallinn University of

Technology - 23 September 2010 38

Z1

BeginBegin

z1

0

Z0

Begin

x1
0

1

y1,y2,z2

Z2

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 39

Modularity
and hierarchy

End

X5

End

z2

0

1y 3

End, y5

y1,y4,z2

Extracting Extracting
data from data from
the treethe tree

Begin

X5

z1

0

Z0

Begin

X

X2

X3

1

0

0

1

1 y8

Z1

Begin

x1

Z2

1

0

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 40

End

z2

1 X4

End (y5)

0

1

y1,y4,z1y1,y2,z1

y6 y7

y9

y3

End, y5

y1,y2,z2

y1,y4,z2

1

Reusable part

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 41

Customizable part

1.Marking the given HGSs with labels that will be
considered as the HFSM states.

2.Customizing the proposed HDL templates for the
combinational circuit

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 42

combinational circuit.

3.Synthesis of HFSM circuits from the customized
VHDL templates using commercially available
computer-aided design tools, such as ISE of Xilinx.

10/8/2010

8

Extracting Extracting
data from data from
the treethe treeBegin

X

z1

a0

a1

0

Z0 Begin

X2

X3

1

0

0

1

1

a0

a1
y8

Z1

Begin

x1

Z2

a0

1

0

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 43

X5

End

z2 a2

a3

0

1
X4

End (y5)

0

1 a1

a6
a2

a3

a7

y8

a4

a5

y1,y4,z1y1,y2,z1

y6 y7

y9

y3

End, y5

y1,y2,z2

y1,y4,z2

a1

a2

a3

a4

1

1.Marking the given HGSs with labels that will be
considered as the HFSM states.

2.Customizing the proposed HDL templates for the
combinational circuit

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 44

combinational circuit.

3.Synthesis of HFSM circuits from the customized
VHDL templates using commercially available
computer-aided design tools, such as ISE of Xilinx.

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 45

Customizable part

Customizable partprocess (FSM_stack,M_stack) – sensitivity list includes also inputs from datapath
begin
inc <= '0'; dec <= '0';

case M_stack(stack_pointer is
when z0 =>

case FSM_stack(stack_pointer is
when a0 => outputs_to_datapath <= (others => '0');

NS <= a1;
when a1 => outputs_to_datapath <= (others => '0');

if x5='0' then NS <= a1;
else NS <= a2;

end if;
if return_flag = '0' then inc <= '1'; NM <= z1;

else inc <= '0';

Begin

z1

a0

a1

Z0

hierarchical call

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 46

else inc <= 0 ;
end if;

when a2 => NS <= a3; outputs_to_datapath <= (others => '0');
if return_flag = '0' then inc <= '1'; NM <= z2;

else inc <= '0';
end if;

when a3 => NS <= a3; outputs_to_datapath <= (others => '0');
if stack_pointer > 0 then dec <= '1';

else dec <= '0';
end if;

when others => null;
end case;

when z1 =>
case FSM_stack(stack_pointer) is

--

X5

End

z2 a2

a3

0

1

hierarchical return

1.Marking the given HGSs with labels that will be
considered as the HFSM states.

2.Customizing the proposed HDL templates for the
combinational circuit

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 47

combinational circuit.

3.Synthesis of HFSM circuits from the customized
HDL templates using commercially available
computer-aided design tools, such as ISE of Xilinx.

Begin

left sensor

move left

right sensor

(Z3) take

0

1

Z1

move right

0

wait

FULL

LEFT SENSOR
1

0

(Z4) deliver

1

0

1

Begin

Z0

(Z6) test

Z1, Z2

OFF

End

0

1

Begin

RIGHT SENSOR

MOVE RIGHT

0

1

Z2

(Z5) UNLOAD

LEFT SENSOR

MOVE LEFT

0

1

WAIT

ONa0
1

a0
3

a0
4

a1
1

a1
2 a1

3

a1
4

a1
5

a1
6

a2
1

a2
2 a2

3

a2
4 a2

5

a0
2

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 48

End FULL

1

0

End

Begin

X1

0

1

y1,y2

Z3

X2

0

y1,y2 End

1

Begin

End

Z4 Begin

End

Z6

a1
7

a2
6

a3
1

a3
2

a3
3

a3
4

a4
1

a4
4

a6
1

a6
3

Begin

End

Z5 a5
1

a5
3

Etc.

10/8/2010

9

Stack 1 Stack Kp
u

sh
1

p
o

p
1

p
u

sh
K

p
o

p
K

reset

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 49

Combinational
Circuit

clockx1

xL

y1

yN

Combinational
Circuit (CC)

Memory (FSM
register - Rg)

Sout

PB

Open/
close
gates

Acknowledgement (module termination/suspend)
A set of HGSs

reset

AB
C

DP states

clock

clock

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 50

Modules activation
DP operations

Top-level manager

24

3012

25 40

HFSM1 17

8 18

10 20

HFSM2 35

61
1

50

HFSM3

Sorting
data for

the

HFSMN

CREDES Workshop, Tallinn University of
Technology - 23 September 2010

51

25

19

40
11

Sorting data for the
first tree

9 16

Sorting data for the
second tree

15

217

the
third tree

Output circuit built from
multiplexers and comparators

Sorted data

1. HFSM with
implicit modules

Control: clock

process(clock,reset) -- the first process describes
begin -- just FSM_stack
if reset='1' then stack_pointer<=0; -- initializing

FSM_stack(stack_pointer)<= -- initial module state a0;
elsif rising_edge(clock) then

if push='1' then
if stack_pointer=stack_size then -- error handling
else stack_pointer<=stack_pointer+1;

FSM_stack(stack_pointer)<=NewR_S;
end if;

elsif pop='1' then stack_pointer<=stack_pointer-1;
end if;

end if;
end process;

states that influence
transitions just for

hierarchical returns

2. Optimization of
hierarchical calls
and returns

3. Using embedded
memory blocks

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 52

FSM_stack
keeps only
states for

returns from
modules

Register – FSM
memory FSM_stack

Combinational
circuit (CC)

current
state

next
state

Control: clock,
reset, push, pop

process (current_state,inputs)
begin -- the second process for the block CC

case FSM_stack(stack_pointer) is
-- description of state transitions

end process;

inputs

outputs
decoding

NewR_S

Structure:

memory blocks

Result:
Hierarchy was
implemented in
hardware more
efficiently than
in software

Z1, Z2

Begin

Z0

(Z6) test

Begin

RIGHT SENSOR

MOVE RIGHT

0

1

Z2

(Z5) UNLOAD

1. Any module can be reused

2. Recursion is supported

3. The proposed
specification is
synthesizable

4 Verifying and debugging

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 53

1, 2

OFF

End

0

1

LEFT SENSOR

MOVE LEFT

0

1

WAIT

FULL

1

0

End

4. Verifying and debugging
are easier

5. Using proposed optimization
techniques makes it possible
hierarchical calls/returns to be
accelerated compared with
similar calls/returns in software.

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 54

10/8/2010

10

Begin

result

z0

A=B,
B=A, z0

B=A%BB,A

B

B>A

B≤A

B=0

B≠0

A B

z1

a0

a1
a2 a3

a4

unsigned int RGCD(unsigned int A,
unsigned int B)

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 55

End
A=B,z0

Begin

A,B
A≥B

A<B

A=A-B

B=AEnd

z1

a5

a1

a2

a0

{ if (B > A) return RGCD(B,A);
else if (B<=0) return A;
else return RGCD(B,A%B);

}

Begin

result

z0

A=B,
B=A, z0

B=A%BB,A

B

B>A

B≤A

B=0

B≠0

A B

z1

a0

a1
a2 a3

a4

process(clock,reset)
begin -- N_S is the next state
if reset='1' then

stack_pointer<=0; FSM_stack(stack_pointer)<=a0;
M_stack(stack_pointer)<=z0;

elsif rising_edge(clock) then
if push='1' then

if stack_pointer=stack_size then
error handling

Hierarchical call

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 56

End
A=B,z0

Begin

A,B
A≥B

A<B

A=A-B

B=AEnd

z1

a5

a1

a2

a0

-- error handling
else stack_pointer<=stack_pointer+1;

FSM_stack(stack_pointer+1)<=a0;
FSM_stack(stack_pointer)<=N_S;
M_stack(stack_pointer+1)<=NM;

end if; -- NM is the next module
elsif pop='1' then

stack_pointer<=stack_pointer-1;
else FSM_stack(stack_pointer)<=N_S;
end if;

end if;
end process;

Hierarchical return

Ordinary transition

Begin

result

z0

A=B,
B=A, z0

B=A%BB,A

B

B>A

B≤A

B=0

B≠0

A B

z1

a0

a1
a2 a3

a4

when z0 =>
case FSM_stack(stack_pointer) is
when a0 =>
-- describing state transitions from a0
when a1 =>
-- describing state transitions from a1
-- and operations in the state a1, etc.
--

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 57

End
A=B,z0

Begin

A,B
A≥B

A<B

A=A-B

B=AEnd

z1

a5

a1

a2

a0

when a5 => N_S <= a5;
if stack_pointer>0 then pop<='1';
else pop<='0';

end if;
when others=>null;
end case;
when z1 =>
-- describing transitions and operations
-- for all states of the module z1

Hierarchical calls

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 58

Hierarchical recursive call

Begin

Applying reduction
rules allowing to

simplify the problem

0

Z0

Is the result
found?

Setting “no result”

Constraint: no branching is required if it cannot
improve any previously recorded result

Z1

a0

a2

a4

Hierarchical calls

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 59

Applying selection
rules

Z0

1

Branching
is required?

Recording the result

End

1

0
Is this

result the
best?

10

Z2

a1

a3

a5

Hierarchical recursive call

Begin

x6

y1,y2,zm
2

1

0

a0

a1

Begin

x3

xx

10

11 0 0

a0

Begin

0

a0

a1zm
1

x5

1

zm
1

zm
2 modules

a0 – a6 – states of
(hierarchical) finite

state machine

module calla)

b) c)

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 60

x7

y3

y1,y4,zm
2

End, y5

1

0

a2

a3

a4

x1x2

x4

End, y10

1 0

y1,y2,zm
1 a1a4

a5a2a3

a6

y7,y8y6,y8y1,y4,zm
1 y9

zm
2

End

a2

a3

10/8/2010

11

X2

X4

Begina0

a1

1

0
0

x6 x7

10

a3 a1

0

0

1
a2 a4

y9

x7

0

1

x6

y2

0

1
a7

y3 a9

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 61

a3 a5
1 0

X3
0

1

y6,y8 y2

y4
y7,y8

y10 a6

xx2
1

y4a8

End
0

a11

xx1
1

0

y1,y5 a10

X1
0

1

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 62

Implementation: NEXYS-2 prototyping board with FPGA of Spartan-3e family

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 63

S – the number of FPGA slices.
Fmax – the maximum achievable clock frequency.
B – the number of block RAMs

Implementation: NEXYS-2 prototyping board with FPGA of Spartan-3e family

request instruction
with the highest priority

l

P PB
In

st
r Build

the
tree

Extract
data

Rebuild
the tree

IV1IV2IV3

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 64

remove a particular
instruction

1. Building the tree with the characteristics considered above.
2. Extracting data in accordance with their priorities.
3. Rebuilding the tree (removing the nodes that are not longer

required).

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 65

Building the tree

Removing unneeded

Rebuilding
sub-trees

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 66

Extracting data
from the tree

Extracting data
with the highest

priority

Removing unneeded
data from the tree Tree-node data

structure

10/8/2010

12

1. The proposed technique makes easier to convert software
functions to hardware implementations because the
mechanisms in software and in hardware become relatively
similar. In particular, recursion is supported.

2. Modular specifications simplify such useful feature as design
reuse and support the strategy divide and conquer.

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 67

3. Modular algorithms make easier verification and debugging.

4. All the proposed specifications are synthesizable and our
experience has shown that for the considered cases the
resulting circuits are faster than the equivalent processor-
based implementations. This is because using the proposed
optimization technique permits hierarchical calls/returns to be
accelerated compared with similar calls/returns in software.

CREDES Workshop, Tallinn University of
Technology - 23 September 2010 68

